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ABSTRACT
Employing colliding-pulse injection has been shown to enable the generation of high-quality electron beams from laser–plasma accelerators.
Here, by using test particle simulations, Hamiltonian analysis, and multidimensional particle-in-cell simulations, we lay the theoretical frame-
work for spin-polarized electron beam generation in the colliding-pulse injection scheme. Furthermore, we show that this scheme enables the
production of quasi-monoenergetic electron beams in excess of 80% polarization and tens of pC charge with commercial 10-TW-class laser
systems.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0152382

I. INTRODUCTION

Particle accelerators are widely used in materials science,1 biol-
ogy,2 medicine,3 fusion research,4 and industry,5 and as sources
of intense and energetic photons.6–12 In science, one of the most
important roles of accelerators is to probe the properties of funda-
mental forces as well as particle structure in searches for possible
physics beyond the Standard Model.13 Conventional accelerators
have an accelerating gradient limit around 100 MV/m owing to the
electrical breakdown of radio-frequency cavities. By contrast, laser-
plasma-based accelerators can support accelerating fields above
100 GV/m,14,15 enabling acceleration of electron beams to sev-
eral GeV energy on centimeter scales.16 Several experiments have
demonstrated the efficacy and robustness of the laser-wakefield
acceleration (LWFA) mechanism.16–23 Compared with conventional
large-scale accelerators, plasma-based accelerators generally have
advantages in costs, size, and achievable peak current. Thus, LWFA
is regarded as a promising route to realizing compact lepton
colliders.24–26

To enable LWFA-based spin-dependent process investigations,
which could also benefit high-energy lepton colliders,27,28 it is cru-
cial to develop all-optical methods for the controlled and reliable
generation of highly polarized electron beams. Recently, theoretical
schemes based on the collision of an ultrarelativistic electron beam

with a tailored laser pulse have been proposed as a possible source
of spin-polarized electron beams induced by hard-photon emissions
in the strong-field QED regime29–34 or by helicity transfer.35 How-
ever, the above methods require high-power and high-intensity laser
pulses and are unsuitable for operating at a high repetition rate.

To generate a high-current spin-polarized electron beam, Wen
et al.36 have put forward a scheme based on the LWFA of pre-
polarized plasma electrons with a density down ramp for injec-
tion.36 With 3D particle-in-cell (PIC) simulations, this method
has been shown to deliver 0.31 kA electron beams with 90.6%
spin polarization by using a 2.1 × 1018 W/cm2 tens of femtosec-
onds laser pulse with ∼2.2 TW power.36 In the scheme of Wen
et al., a pre-polarized plasma is first produced via laser-induced
molecular photodissociation, a method successfully employed in
experiments to generate a high-density electron-spin-polarized gas
with densities from 1016–1019 cm−3.37–39 Note that, in practice,
it is not the entire plasma source that must be pre-polarized,
but rather only the restricted injection volume itself. Although
the pre-polarized plasma lifetime is of the order of 10 ns, hyper-
fine coupling results in a periodic electron-to-nucleus spin transfer
with ∼100 ps period.38 Thus, the driving laser pulse can arrive
tens of picoseconds after plasma pre-polarization, which is easily
achievable with existing laser technology. Furthermore, while the
alignment of laser pulses inside a plasma source with micrometer
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precision in both space and time has been demonstrated (see, e.g.,
Ref. 40), the laser pulses employed for plasma pre-polarization
have low intensity requirements, such that their focal size can be
large enough to easily enable spatial overlap. Remarkably, with the
advent of 100 nm lasers,41 the molecular photodissociation tech-
nique might be applied to pure hydrogen, potentially enabling 100%
plasma pre-polarization. The method of plasma pre-polarization via
laser-induced molecular photodissociation was initially proposed by
Hützen et al. and applied to polarized proton beam generation in
laser-plasma interaction in Ref. 42. Following these seminal works,
other schemes utilizing a pre-polarized plasma were put forward to
generate energetic spin-polarized electron (or proton) beams43–55 or
to investigate polarization effects in inertial confinement fusion.56

More recently, Nie et al.57 proposed to exploit the spin-dependent
ionization cross section of xenon atoms to generate up to ∼31%
spin-polarized and 0.8 kA current electron beams in a beam-driven
plasma wakefield accelerator. However, the above methods have lim-
itations on the attainable charge or spin polarization of the beam,
and no simple route exists to control the generated beam features.

The colliding-pulse injection (CPI) scheme58,59 has pro-
duced high-quality electron beams of low divergence and energy
spread,60–63 which are stable and reproducible.60,61,64–66 CPI provides
many degrees of freedom that permit control over the generated
beam features. For instance, the produced electron beam energy,
charge, and energy spread are tunable by adjusting the position of
the collision point in the plasma source,60 or the relative polarization
between the driving and colliding laser pulses.62 This renders CPI
a robust and versatile alternative to single-pulse LWFA to reliably

FIG. 1. Schematic of colliding pulse injection. (a) Two colliding laser pulses irra-
diate a pre-polarized underdense plasma with longitudinal density profile ne(x)
shown by the black dashed line. (b) Some plasma electrons (blue) undergo col-
lisionless heating and gain residual energy and longitudinal momentum (red). (c)
The electrons that have gained sufficient longitudinal momentum (red) to satisfy
the injection criterion are trapped and subsequently accelerated in the wakefield.

generate high-quality, high-current spin-polarized electron bunches
from a pre-polarized plasma, as shown below (see also Ref. 67).
In CPI, a driving laser pulse with relativistic intensity induces a
wakefield, while a sub-relativistic-intensity colliding pulse enables
injection in the wake. As schematically illustrated in Fig. 1, the
interaction process consists of two stages: (i) stochastic collision-
less heating of plasma electrons by the two colliding laser pulses;
(ii) trapping and acceleration of some energized electrons by the
wakefield excited by the driving laser pulse.

In this article, we develop a model with an effective Hamilto-
nian that characterizes the electron dynamics, validate its predic-
tions against quasi-3D PIC simulations, and show that CPI enables
the generation of high-current and highly spin-polarized electron
beams with controllable average spin polarization. The optimiza-
tion of the beam features, including its charge and spin polarization,
is studied in more detail in Ref. 67. Our work is arranged in four
sections. In Sec. II, we present 2D PIC simulation results showing
the plasma electron dynamics with and without the colliding laser
pulse. In Sec. III, we discuss electron heating and the injection cri-
terion. In Sec. IV, quasi-3D PIC simulations under the assumption
of near cylindrical symmetry are performed to validate the theo-
retical model and further elucidate the electron injection dynamics
and its influence on the charge and polarization of the electron
beam. Our results are summarized in Sec. V, while the details
of the particle spin pusher that we implemented in the spectral
numerical-dispersion-free quasi-3D PIC code FBPIC68 are detailed
in the Appendix.

II. 2D SIMULATIONS
Our 2D simulations are performed using the PIC code

EPOCH,69 where we implemented the electron spin dynamics.
Following Ref. 36, we exploit Ehrenfest’s theorem70 to describe
the spin of an electron in a quasiclassical state with a vec-
tor s, where ∣s∣ = 1. The evolution of s is determined by the
Thomas–Bargmann–Michel–Telegdi (TBMT) equation,71,72 and in
our EPOCH simulations is implemented via the Boris pusher
method73–76 (see below and the Appendix for an alternative imple-
mentation). Given the relatively low laser pulse intensities con-
sidered here, radiation reaction effects77,78 as well as other spin
effects such as the Stern–Gerlach force79,80 and the Sokolov–Ternov
effect48,81 are negligible. In simulations, an underdense plasma
is irradiated by a relativistic-intensity driving laser pulse and a
subrelativistic-intensity colliding laser pulse. The driving pulse is
linearly polarized along the y axis, incoming from the left bound-
ary of the computational box, and has a Gaussian transverse
and longitudinal profile with w0 = 8 μm waist radius, I0 = 8.7
× 1018 W/cm2 peak intensity, and τ0 = 25 fs duration full width
at half maximum (FWHM) of the intensity. Its wavelength is
λ0 = 0.8 μm, and the corresponding normalized field amplitude

is a0 ≈ 0.85λ0[μm]
√

I0[1018W/cm2] ≈ 2. The colliding pulse has
the same parameters as those of the driving pulse, except for the
peak intensity, which is I1 = 5.4 × 1017 W/cm2, corresponding to a
normalized field amplitude a1 ≈ 0.5.

The computational box size is 120λ0(x) × 70λ0(y) and is uni-
formly divided in cells with a size of λ0/20 (x) × λ0/20 (y). The pre-
polarized plasma has a plateau electron density profile ne(x) = ne,0
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= 1018 cm−3 for x > x1 and a linear up-ramp density profile for
x0 < x < x1, where x0 = 0 and x1 = 20λ0 [see Fig. 1(a)]. In the sim-
ulation, 32 particles per cell are used for electrons, and ions are
treated as immobile. The focus of both the driving and the col-
liding laser pulses is set to be located at x = 35λ0 in vacuum. The
simulation box moves at the speed of light c, and open bound-
ary conditions are adopted for both fields and particles. The group
velocity of the driving laser pulse propagating inside the under-

dense plasma is vg = c
√

1 − ω2
pe/(γ̃ω2

0), where ωpe =
√

4πnee2/me is
the plasma frequency, ω0 = 2πc/λ0 is the laser angular frequency,

and γ̃ ≈
√

1 + a2
0/2 is the cycle-averaged Lorentz factor of the

plasma electrons. Here, me and e are the electron mass and charge,
respectively.

To illustrate the effect of the colliding laser pulse on the elec-
tron dynamics, we compare the 2D PIC simulation results obtained
with and without the colliding pulse. As displayed in Fig. 2, a plasma
cavity with length c/ωpe ≈ 30 μm is sustained behind the driving
pulse. In the presence of the colliding pulse, an electron bunch
is stably injected at the rear of the cavity, resulting in ∼15 MeV
energy gain over 200 μm propagation distance, whereas essentially
no electron injection is observed without the colliding pulse (see
Fig. 2). The corresponding particle tracking results from 2D PIC
simulations are displayed in Fig. 3. For the case without a col-
liding pulse, the background plasma electrons merely experience
the smooth oscillation excited by the driving laser ponderomotive
force, and no background electrons are injected into the wakefield
cavity [Figs. 3(a)–3(d)]. These electrons do not have a net energy
gain, and their growing depolarization over time is attributed to the
spin precession induced by the magnetic field while traversing the
plasma cavity [see Fig. 3(d)]. By contrast, with a colliding pulse,
a fraction of the electrons originating from the central region are
injected into the first wakefield cavity and subsequently undergo
acceleration [Figs. 3(e)–3(h)]. Electron injection occurs owing to the
electrons’ residual longitudinal momentum px > 0 after interacting
with the colliding laser fields [see Fig. 3(g) and below]. The elec-
tron beam spin polarization is primarily determined by the transient
chaotic dynamics induced during the driving- and colliding-pulse

FIG. 2. 2D PIC simulation results. The driving and colliding laser pulse intensities
are a0 = 2 and a1 = 0.5, respectively. Both pulses have w0 = 8 μm waist radius
and τ0 = 25 fs duration. (a) Snapshot of the electron plasma density ne and the
laser electric field Ey at time t = 100T0. (b) Same as (a), but at time t = 340T0. In
(a) and (b), the upper and lower half-panels correspond to the cases respectively
with and without the colliding laser pulse.

interaction, while it is almost unchanged during the acceleration
phase [see Fig. 3(h)]. In contrast to the spin dynamics observed in
the down-ramp injection scheme,36 in CPI no strong correlation
between the accelerated electrons’ longitudinal spin polarization
loss 1 − sx and their initial transverse coordinate y is observed [see
Fig. 3(h) and Sec. IV].

III. THEORETICAL ANALYSIS
In the following, we employ a two-stage model to characterize

the electron dynamics and elucidate the injection process.

A. Electron collisionless heating in colliding pulses
It is known that, in vacuum, an electron initially at rest

remains at rest after interacting with a laser pulse, if the pulse
can be approximated as a plane wave. Thus, in a one-dimensional
model where plasma fields are small compared with the laser
fields, the electron longitudinal residual momentum δpx mainly
stems from the interaction with the fields of the two colliding
laser pulses. The residual momentum δpx is of critical impor-
tance in determining the electron injection into the forward mov-
ing plasma cavity. If the plane-wave fields are derived from a
vector potential expressed as A0,1, then the corresponding elec-
tric and magnetic fields are E0,1 = −∂A0,1/∂ct and B0,1 = ∇× A0,1,
where subscripts 0 and 1 denote the driving and colliding laser
pulses, respectively. By considering for simplicity the vector poten-
tials of monochromatic plane waves A0 = a0(mec2/∣e∣) sin ϕ êy and
A1 = a1(mec2/∣e∣) sin (ϕ + 2k0x + ϕ1) êy, with ϕ = ω0t − k0x being
the light front time, ϕ1 the initial phase, êy the unit vector along the
y direction, and k0 = ω0/c the wavenumber, the electron dynamics
inside the two colliding laser pulse fields are determined by

dpy

dϕ
= ∣e∣

c
d

dϕ
(A0,y + A1,y), (1)

dpx

dϕ
= − ∣e∣

ω0

py

p−
(B0,z + B1,z), (2)

where p− ≡ γemec − px, dϕ/dt = p−ω0/γemec, B0,z
= −a0(meω0c/∣e∣) cos ϕ, and B1,z = a1(meω0c/∣e∣) cos(ϕ + 2k0x
+ ϕ1). From Eq. (1), one immediately derives an integral of motion
for the transverse momentum py = ∣e∣(A0,y + A1,y)/c, such that
Eq. (2) becomes

dpx

dϕ
= m2

e c2

p−
[a2

0 cos ϕ sin ϕ + a0a1 sin (2k0x + ϕ1)

− a2
1 cos (ϕ + 2k0x + ϕ1) sin (ϕ + 2k0x + ϕ1)]. (3)

The terms containing 2k0x in Eq. (3) hint at a strong dependence on
initial conditions. In fact, previous studies have already shown that
the resulting dynamics are chaotic,82 and that plasma heating due
to stochastic acceleration can occur inside the counterpropagating
laser pulses.83

To obtain the dependence of the residual momentum δpx and
spin depolarization δsx on the laser parameters, we therefore resort
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FIG. 3. Particle tracking results from 2D PIC simulations with the same parameters as those in Fig. 2. The rainbow color map shows the initial electron’s transverse position
∣y t=0∣. The black dashed line indicates the value obtained by averaging over the displayed trajectories. (a) and (e) Electron trajectories in the wake-frame coordinates (ξ, y).
(b) and (f) Temporal evolution of the electron energy γe. (c) and (g) Longitudinal electron momentum px . (d) and (h) Longitudinal spin component sx of the electron. (a)–(d)
correspond to the case without the colliding laser pulse, and (e)–(h) to the case with the colliding pulse.

to test-particle simulations.84–86 In our test-particle simulations, the
two laser pulses are modeled as plane waves with electric fields

∣e∣Ey,0

meω0c
= a0 exp

⎧⎪⎪⎨⎪⎪⎩
−( ϕ − ϕ0

ω0τ0/
√

2 ln 2
)

2⎫⎪⎪⎬⎪⎪⎭
cos ϕ, (4)

∣e∣Ey,1

meω0c
= a1 exp

⎧⎪⎪⎨⎪⎪⎩
−( ϕ + 2k0x − ϕ1

ω0τ0/
√

2 ln 2
)

2⎫⎪⎪⎬⎪⎪⎭
cos (ϕ + 2k0x), (5)

and magnetic fields B0,z = E0,y and B1,z = −E1,y. The laser wavelength
and period are denoted by λ0 = 0.8 μm and T0 = λ0/c ≈ 2.67 fs,
respectively, while τ0 is the FWHM of the intensity. Here, ϕ0 = 0
and ϕ1 = 100π determine the initial positions of the peaks of the
driving and colliding laser pulses, which correspond to 0 and 50λ0,
respectively. The initially at rest and uniformly distributed electrons
are located in the region 20λ0 ⩽ x ⩽ 30λ0. In the calculations of the
electron momentum p and spin s, an explicit Boris pusher method
is utilized, where the timestep is Δt = 5 × 10−4T0. This timestep
satisfies the stringent temporal criteria for electron acceleration.87

For τ0 = 25 fs, the test-particle simulation results for the resid-
ual longitudinal momentum δpx and spin variation δsx are shown in
Fig. 4. Both δpx and δsx are calculated by averaging over the forward-
moving electrons after they have separated from the two colliding
pulses. By numerically fitting the results over the range 1 ⩽ a0 ⩽ 3
and 10−2 ⩽ a1 ⩽ 1, we obtain the scalings δpx ≈ 0.29a2

0a1mec and
δsx ≈ 0.25a0a1. As shown in Fig. 4, the curves obtained from the
above simple scaling model agree fairly well with the test-particle
simulation results.

It is worth emphasizing that, in general, stochastic heating,
and consequently δpx and δsx, are also expected to depend on the
laser pulse duration τ0. To examine the impact of τ0, for each
τ0 in the range 6.2 fs ⩽ τ0 ⩽ 43.9 fs, we assume scalings of the
form δpx = κpan0

0 an1
1 mec and δsx = κsam0

0 am1
1 , where κp,s, n0,1, and m0,1

are constants obtained by numerically fitting the residual longi-
tudinal momentum and electron spin. Tables I and II report the
obtained coefficients. Table I highlights a pronounced dependence
of the exponent n0 on the laser pulse duration, which originates
from an increased stochastic heating and longitudinal momentum
gain of electrons for longer-duration laser pulses. Given the relative
simplicity of the obtained scaling, this is employed for quantita-
tive predictions of the electron injection threshold and of the final
beam polarization, which are validated against PIC simulations (see
below).

B. Hamiltonian analysis of electron trapping
The second stage of electron injection corresponds to elec-

tron trapping into the subluminal wakefield, which is investigated
through Hamiltonian analysis.

In LWFA, electrons gain energy from the longitudinal electric
field of the Langmuir wave excited by the ponderomotive force of
the laser pulse. This is modeled, for simplicity, by considering the
1D dynamics of electrons in the moving frame of the first cavity
in the wake of the laser pulse. The drifting velocity of the plasma
cavity vd equals the group velocity of the laser pulse inside the

underdense plasma vg , i.e., vd = c
√

1 − ω2
pe/(γ̃ω2

0). In the cavity-
frame coordinate ξ ≡ x − vdt, the longitudinal electric field Ex(ξ)
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FIG. 4. Test-particle simulation results. Each color corresponds to a different driv-
ing laser pulse amplitude a0, and the horizontal axis gives the colliding laser pulse
amplitude a1. (a) Residual longitudinal momentum δpx after the collision of the
two plane-wave pulses. (b) Spin polarization loss δsx ≡ 1 − sx . In both panels,
dashed lines display the prediction obtained by numerical fitting the simulation
data as δpx = 0.29a2

0a1mec and δsx = 0.25a0a1.

TABLE I. Parameters of the scaling δpx ≈ κpan0
0 an1

1 mec calculated by numerical
fitting of the results of test-particle simulations.

τ0 (fs) 6.2 12.6 18.8 25.0 31.4 37.7 43.9
n0 0.75 1.25 2.0 2.0 2.0 3.0 3.25
n1 0.75 0.75 1.0 1.0 1.0 1.0 1.0
κp 0.30 0.26 0.27 0.29 0.32 0.27 0.28

TABLE II. Parameters of the scaling δsx ≈ κsam0
0 am1

1 calculated by numerical fitting
of the results of test-particle simulations.

τ0 (fs) 6.2 12.6 18.8 25.0 31.4 37.7 43.9
m0 1.0 1.0 1.0 1.0 1.0 1.5 1.5
m1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
κs 0.10 0.17 0.19 0.25 0.27 0.30 0.36

depends only on ξ. The electron dynamics are characterized by the
equations88

dpx

dt
= −∣e∣Ex(ξ), (6)

dξ
dt
= px

me

√
1 + (px/mec)2

− vd, (7)

where vd is independent of time. The electric potential of the
longitudinal wakefield can be derived as φ(ξ) = −∫ Ex(ξ)dξ such
that Ex(ξ) = −∂φ(ξ)/∂ξ. This allows us to determine the electron
motion in the moving wakefield from the conserved Hamiltonian

H(ξ, px) = −∣e∣φ(ξ) + c
√

m2
e c2 + p2

x − vdpx. (8)

Indeed, Eqs. (6) and (7) can be obtained from Hamilton’s equa-
tions dpx/dt = −∂H(ξ, px)/∂ξ and dξ/dt = ∂H(ξ, px)/∂px. By set-
ting dpx/dt = 0 and dξ/dt = 0, we find a fixed point (ξ∗, p∗x ) in
(ξ, px) phase space where ξ∗ satisfies the condition E(ξ∗) = 0 and

p∗x = vdme/
√

1 − v2
d/c2. This fixed point corresponds to a scenario in

which an electron with velocity vx = vd is comoving with the wake-
field and does not exchange energy with the longitudinal electric
field.

We are interested in the electron dynamics inside the first cav-
ity of the laser-driven wake. The corresponding longitudinal electric
field can be approximated as [see Fig. 5(a)]

Ex(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ξ ⩽ ξ4,

−E0
ξ − ξ4

ξ3 − ξ4
if ξ4 < ξ ⩽ ξ3,

−E0
ξ0 − ξ
ξ0 − ξ3

if ξ3 < ξ ⩽ ξ0,

E0
ξ − ξ0

ξ1 − ξ0
if ξ0 < ξ ⩽ ξ1,

E0
ξ2 − ξ
ξ2 − ξ1

if ξ1 < ξ ⩽ ξ2,

0 if ξ2 < ξ,

(9)

where E0 is the peak value of ∣Ex(ξ)∣ and is reached at ξ1,3, while
ξ2,4 denote the boundaries of the cavity. As shown in Fig. 5(a),
ξ4 = −ξ2 and ξ3 = −ξ1 as a result of the symmetry of the field with
respect to ξ0 = 0. Accordingly, the potential is calculated through
φ(ξ) = −∫ ξ

−∞E(ξ) dξ with φ(−∞) = 0, which gives

φ(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ξ ⩽ ξ4,

E0
(ξ − ξ4)2

2(ξ3 − ξ4)
if ξ4 < ξ ⩽ ξ3,

E0
ξ0 − ξ4

2
− E0

(ξ0 − ξ)2

2(ξ0 − ξ3)
if ξ3 < ξ ⩽ ξ0,

E0
ξ2 − ξ0

2
− E0

(ξ − ξ0)2

2(ξ1 − ξ0)
if ξ0 < ξ ⩽ ξ1,

E0
(ξ − ξ2)2

2(ξ2 − ξ1)
if ξ1 < ξ ⩽ ξ2,

0 if ξ2 < ξ.

(10)

For definiteness and without loss of generality, we consider the
following parameters: vd/c ≈ 0.9997, ξ0 = 0, ξ1 = −ξ3 = 10.4 μm,
ξ2 = −ξ4 = 13.0 μm, and E0 = 0.022mecω0/∣e∣ ≈ 96 GV/m. These
parameters are similar to those identified in LWFA experiments
where GeV electron beams are produced from a centimeter-
scale underdense plasma.89 The corresponding minimum electron
potential energy is −∣e∣φ(ξ0)/(mec2) ≈ 0.9.

For the above-mentioned parameters, Fig. 5(a) displays the
profiles of the electric field Ex(ξ) and potential φ(ξ) obtained from
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FIG. 5. Illustration of the Hamiltonian model. (a) Electron potential energy −∣e∣φ
(black dashed line) and longitudinal electric field Ex (blue solid line) as functions of
the wake-frame coordinate ξ. (b) Value of the Hamiltonian H(ξ, px) in Eq. (8) in
units of electron rest energy mec2 (brown color map) and its contour levels (black
dashed lines). The rainbow color lines display the evolution in the (ξ, px) phase
space of the electrons initially located at ξ = 10 μm. (a) and (b) share the same
horizontal axis.

Eqs. (9) and (10), respectively. Figure 5(b) displays the correspond-
ing values of the Hamiltonian H(ξ, px), as well as the phase space
evolution of a group of electrons initially located at ξ = 10 μm with
momentum mec ⩽ px∣t=0 ⩽ 10mec. Their evolution in (ξ, px) clearly
shows that there exists a longitudinal momentum threshold pth for
the occurrence of electron trapping in the wake. This allows us to
determine whether an energized electron gets trapped by the wake-
field Ex(ξ) or slides away from the potential cavity [see Fig. 5(b)].
The electrons with px∣t=0 < pth are not sufficiently fast to be trapped
by the forward-moving wake. Thus, they slide away from the wake
cavity and are not injected. These electrons are termed untrapped
electrons. By contrast, the electrons with px∣t=0 > pth are trapped by
the potential well φ(ξ) and subsequently efficiently accelerated to
an energy of ∼400 MeV in the region of the cavity where the field
Ex(ξ) is negative and therefore accelerating for electrons. These
electrons are termed trapped electrons. To determine the thresh-
old pth, we consider the contour of H(ξ, px) between the separatrix
point (ξ4, pd) and the threshold (ξ, pth), which is given by H(ξ, pth)
= H(ξ4, pd). This gives

(1 − β2
d)(

pth

mec
)

2
− 2βd A(

pth

mec
) + 1 − A2 = 0, (11)

where βd = vd/c,

A = ∣e∣φ(ξ)
mec2 +

1
γd

, γd =
1√

1 − β2
d

,

and pd = γdvdmec. The two solutions p±th of Eq. (11) are

p±th
mec
=

βd A ±
√

β2
d + A2 − 1

1 − β2
d

. (12)

By employing the parameters listed below Eq. (10), we obtain
∣e∣φ(ξ)/(mec2) ≈ −0.24 at ξ = 10 μm and γd ≈ 41.6. Thus, the
momentum threshold for electron trapping is p−th ≈ 1.7 mec, which
agrees well with the numerically calculated electron trajectories
in Fig. 5(b). The conjugate root p+th ≈ 917mec corresponds to the
attainable energy of an electron trapped with momentum near the
threshold after it undergoes acceleration in the cavity and returns to
ξ = 10 μm [see Fig. 5(b)]. In this description, the maximum and min-
imum longitudinal momenta are reached at ξ0 = 0. Note that while
the simplified longitudinal electric field profile in Eq. (9) does not
precisely match that obtained in PIC simulations [compare Figs. 5(a)
and 6(a)], our analysis and model are not sensitive to the exact form
of the longitudinal electric field. In fact, the injection criterion p−th
and the maximum attainable energy γmax

e ∼ p+th in Eq. (12) are deter-
mined once the potential φ(ξ) around the peak of the longitudinal
electric field and the drifting velocity vd have been given (see Sec. IV
for details).

IV. MODEL VALIDATION
To validate the model presented in Sec. III and the injec-

tion condition δpx > p−th, with p−th defined in Eq. (12), we track the
evolution of an electron with initial position y ≈ 0 in the 2D PIC sim-
ulations of Sec. II and investigate its evolution both with and without
the colliding pulse. The corresponding results are displayed in Fig. 6,
where the magenta and green lines correspond to the cases respec-
tively with and without the colliding pulse. In both cases, the electron
trajectory in (ξ, px) space shows that its evolution nearly follows the
contour of the Hamiltonian90 after the electron interaction with the
pulses ends [see Fig. 6(b)]. In the case without the colliding pulse,
the electron trajectory in (ξ, px) space always remains below the
separatrix, and the electron is not trapped and readily slides away
from the plasma cavity. In the case with the colliding pulse, how-
ever, the electron has a residual longitudinal momentum δpx > 0.
The residual momentum satisfies the injection criterion, namely,
δpx > p−th, and the electron gets trapped in the cavity [see Fig. 6(b)].
For the traced electron, the longitudinal spin polarization sx is mod-
ulated by the colliding laser fields, but returns nearly to its original
value after the passage of the laser pulses. Moreover, sx does not
significantly change during the subsequent acceleration stage inside
the cavity.

For a homogeneous plasma, one can infer p±th in Eq. (12)
with the following estimates: βd =

√
1 − S, 1/γd =

√
S, and A

= ρφ̃ + 1/γd, where S ≡ ne/γ̃nc, nc = meω2
0/4πe2, φ̃ = ∣e∣φ0/mec2,

φ0 = 4π∣e∣ne(c/ωpe)2, and γ̃ =
√

1 + a2
0/2. The coefficient 0 < ρ ≲ 1

accounts for the unknown position of the electron inside the cav-
ity when the electron–laser pulses interaction ends [see the magenta
line in Fig. 6] and for the minimum of the actual potential, which is
simply estimated as φ0. As will become clear below, in practice ρ is
extracted from quasi-3D PIC simulations. Now, p−th in Eq. (12) can
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FIG. 6. Particle tracking results from 2D PIC simulations. The driving- and colliding-
laser pulse intensities are a0 = 2 and a1 = 0.5, respectively. Both laser pulses
have w0 = 8 μm waist radius and τ0 = 25 fs duration. The magenta and green lines
correspond to the cases respectively with and without the colliding laser pulse. (a)
Electron trajectories in (ξ, y) space. The blue–red color map displays the longitu-
dinal electric field. The black dashed line plots Ex at y = 0. (b) Electron trajectories
in (ξ, px) space. The brown color map shows the normalized value of the Hamil-
tonian H from Eq. (8), where the potential φ(ξ) is obtained from the Ex at y = 0
of the simulation [see the black dashed line in (a)]. (c) Evolution of the longitudinal
spin sx .

be recast as

p−th
mec
≈
√

1 − S(ρφ̃ +
√
S) −

√
ρ2φ̃ 2 + 2ρφ̃

√
S

S
. (13)

By combining Eq. (13) with the scaling of the residual longitudinal
momentum δpx ≈ κpan0

0 an1
1 mec (see Table I), the injection criterion

δpx > p−th becomes a1 > a∗1 , where

a∗1 =
⎡⎢⎢⎢⎢⎢⎣

√
1 − S(ρφ̃ +

√
S) −

√
ρ2φ̃ 2 + 2ρφ̃

√
S

κpan0
0 S

⎤⎥⎥⎥⎥⎥⎦

1/n1

. (14)

To test the validity of the scaling predicted by the injection
criterion in Eq. (14) in a more realistic 3D scenario, we perform
parametric scans with the spectral quasi-3D PIC code FBPIC68 with
Nm = 2 azimuthal modes, where Nm > 1 accounts for departures
from cylindrical symmetry in the fields. The simulation domain
is a cylinder with a size of x × r = 50 × 25 μm2, with cell size
Δx = 1/80 μm and Δr = 1/40 μm. Similarly to the 2D EPOCH simu-
lations presented in Sec. II, the two colliding laser pulses are linearly

polarized along the y axis with λ0 = 0.8 μm wavelength, and have a
Gaussian profile both in space and in time with τ0 = 25 fs FWHM
of the intensity duration and w0 = 8 μm waist radius. The driving
laser pulse normalized amplitude is 1 ⩽ a0 ⩽ 2.5, while the colliding
laser pulse normalized amplitude is 0.01 ⩽ a1 ⩽ 0.2. As in Sec. II,
the plasma is underdense, with a linearly growing density pro-
file followed by a plateau with density ne,0 = 1018 cm−3 for x > x1
[see Fig. 1(a)]. The numbers of macroparticles per cell per species
along the cylindrical coordinate axes z, r, and θ are pn,z = 4, pn,r = 4,
and pn,θ = 4, respectively. Note that the spectral cylindrical repre-
sentation implemented in FBPIC prevents numerical Cherenkov
radiation (NCR), thus permitting both fast and accurate simula-
tions. To mitigate NCR, a finite difference Cartesian 3D code would
require very small spatial and temporal steps, greatly increasing the
computational cost. Simulations with Nm = 3 did not show signifi-
cant differences with respect to Nm = 2, thus indicating that possible
effects beyond cylindrical symmetry are properly accounted for. For
simulations with laser pulses carrying a high orbital angular momen-
tum, not considered in the present work, the inclusion of several
azimuthal modes would be required. In post-processing, the elec-
tron beam charge is self-consistently calculated from the weight
of each macro-electron. As the FBPIC simulation domain has a
cylindrical geometry, the macroparticle weight w is calculated as
w = nr dθ dr dz, where n is the plasma number density, r is the
radial coordinate, and dθ, dr, and dz are the grid steps along the
azimuthal, radial, and longitudinal directions, respectively (see Ref.
91 for details of the FBPIC algorithm and features).

Figure 7 displays the model and FBPIC simulation results
obtained with the above-mentioned parameters. In particular,
Figs. 7(a) and 7(b) show the generated electron beam charge Q
and average longitudinal spin polarization ⟨sx⟩, respectively, while
Fig. 7(c) shows the average beam polarization as predicted by the
model, ⟨sx⟩ = 1 − κsa0a1 (see Table II). The black dashed line in
Figs. 7(a)–7(c) plots a∗1 , which is the injection threshold according to
Eq. (14), where ρ is used as a fitting parameter to the quasi-3D FBPIC
simulations, which gives ρ = 0.55. Remarkably, the scaling obtained
from the model is in good agreement with the simulation results.
Indeed, both the predicted scaling for electron injection as obtained
in Eq. (14), which is set once ρ has been fixed, and the longitudi-
nal beam polarization as estimated by assuming the simple scaling
δsx ≈ κsam0

0 am1
1 with the coefficients extracted from test-particle sim-

ulations (see Table II), are in good agreement with simulations (see
Fig. 7).

Figure 7 shows that while highly polarized beams are generated
with laser field amplitudes chosen around the injection threshold
a1 ≈ a∗1 , the electron beam charge Q is smaller for these lower field
amplitudes. In fact, while the charge Q can be increased with higher
a1, this also results in a decrease in the average spin polarization
⟨sx⟩ because of the stronger depolarization induced by the collid-
ing laser pulses. By tuning the laser intensities a0 and a1, one can
prioritize the electron charge Q or the spin polarization of the
beam. However, one of the key advantages of the CPI scheme is the
availability of more degrees of freedom than LWFA with a single
laser pulse. Such flexibility naturally lends itself to multiparameter
space optimization, as shown in Ref. 67, where Bayesian optimiza-
tion is employed to conceptually demonstrate high-charge, highly
polarized, and low-emittance electron beam generation. In addition,
the average charge delivered per unit time can be simply increased
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FIG. 7. Parameter scans over the normalized amplitudes a0 and a1 of the driving and colliding laser pulses, respectively, performed with the spectral quasi-3D PIC code
FBPIC. (a) Injected electron charge Q. (b) Electron beam average spin polarization ⟨sx⟩. The cross marks in (a) and (b) denote the cases in which no significant electron
injection was observed. The black dashed line in (a)–(c) plots the injection threshold according to Eq. (14). (c) Average longitudinal spin polarization ⟨sx⟩ = 1 − κsa0a1 as
predicted from the scaling obtained with the test-particle simulations (see Table II).

by employing relatively low-power laser systems operating at high
repetition rate.

Figures 8(a)–8(d) display the electron density distribution, the
transverse focusing force, the electron energy spectrum, and the
average spin dependence on the energy of an electron beam obtained

with a0 = 2 and a1 = 0.05. The corresponding laser intensity and
power are 8.6 × 1018 W/cm2 and 8.7 TW, and 5.4 × 1015 W/cm2 and
5.4 GW for the driving and colliding pulses, respectively. Figure 8(a)
shows that a bunch of electrons is injected at the rear of the first
cavity. The transverse focusing force −Ey + cBz stabilizes electron

FIG. 8. FBPIC simulation results with a0 = 2 and a1 = 0.05 driving and colliding laser pulses, respectively. (a) and (b) Snapshots of electron density distribution ne and
transverse focusing force −Ey + cBz , respectively, at t = 500T0. (c) Electron energy spectrum dNe/dεe. (d) Average spin polarization ⟨sx⟩ as a function of electron energy
εe. In (c) and (d), each color corresponds to a specific time. (e) Evolution of injected electrons (rainbow color map) in (ξ, px) space and the corresponding Hamiltonian
distribution H(ξ, px) (brown color map). (f) Zoom of (e) at t = 100T0 showing the three electron populations labeled A, B, and C. In (e) and (f), the white dashed ellipse
marks the electrons near the Hamiltonian separatrix. (g) Initial position in (x, y) space of the injected electrons that eventually constitute the three populations A, B, and C
whose evolution is shown in (e) and (f). The rainbow color map in (e)–(g) indicates the spin polarization at time t = 500T0. (h) Evolution of injected electron populations in
longitudinal phase space (x, px), where each color corresponds to a different time, namely, t = 50T0, 70T0, and 90T0.
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acceleration in the cavity during the acceleration stage [Fig. 8(b)].
The injected electron bunch has ∼2.27 pC charge, 90% average lon-
gitudinal spin polarization, and about 33 MeV average energy after
undergoing acceleration over ∼450 μm, with an accelerating gradient
of ∼90 GeV/m. The electron energy spectrum dNe/dεe as a func-
tion of time clearly shows that the beam is highly monochromatic
and that the energy spread is preserved over the acceleration stage
[see Fig. 8(c)]. The average spin distribution ⟨sx⟩ as a function of
the electron energy εe exhibits a correlation between electron energy

and electron degree of polarization, with the higher-energy electrons
having predominantly a lower average spin [see Fig. 8(d)].

Further insights can be gained by analyzing the temporal evo-
lution of the injected electrons [Fig. 8(e)] and by closely examining
their distribution in (ξ, px) phase space [Fig. 8(f)]. By comparing the
electron distribution in (ξ, px) space at different times [see Fig. 8(e)
and the zoom of the distribution of injected electrons at t = 100T0
in Fig. 8(f)], we find that the electrons with lower final spin polariza-
tion are injected with lower energy, initially, and with a longitudinal

FIG. 9. FBPIC particle tracking results with a0 = 2 and a1 = 0.05 driving and colliding laser pulses, respectively, as functions of ct − x (i.e., the time evolution is from left to
right). (a1)–(c1) Evolution of momentum components px (green), py (red), pz (blue). (a2)–(c2) Evolution of spin components sx (green), sy (red), sz (blue). (a3)–(c3) Evolution
of transverse coordinate y of two representative electrons. (a1)–(a3), (b1)–(b3), and (c1)–(c3) are for electrons from populations A, B, and C, respectively.
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momentum near the injection threshold p−th [see Fig. 8(f)]. These
electrons are later accelerated to higher energy inside the cavity, as
predicted by the Hamiltonian model [see the contours of the Hamil-
tonian in Figs. 8(e) and 8(f)]. This explains the correlation between
electron energy and the average spin of electrons in the generated
beam. The zoom of the electron (ξ, px) distribution in Fig. 8(f) sug-
gests the existence of three distinct electron populations, which are
labeled A, B, and C. This is corroborated by tracking the injected
electrons back to their initial positions and examining their evolu-
tion. Figure 8(g) plots the initial positions of injected electrons in
(x, y) space, while Fig. 8(h) displays their detailed evolution in lon-
gitudinal phase space (x, px) for t < 100T0. Figures 8(g) and 8(h)
show that the electrons belonging to population A interact with the
driving laser pulse significantly before interacting with the colliding
pulse, thus suggesting that the colliding pulse merely plays a per-
turbative role for population A electrons. These electrons do not
show a violent stochastic spin precession, and the spin polariza-
tion loss induced by the colliding pulses is insignificant. Figure 8(g)
shows that the electrons belonging to populations B and C first inter-
act with the colliding laser pulse before experiencing the stronger
fields of the driving pulse. Population B and population C electrons
occupy nearly the same spatial region around x ≈ 40λ0, initially, and

form transverse “stripes” that are longitudinally shifted by λ0/2 [see
Fig. 8(g)]. Thus, population B and population C electrons have a
phase difference ϕ1,B − ϕ1,C = π, which implies a different longitu-
dinal momentum according to Eq. (3). As a result, while electrons
belonging to population B quickly slide away from the driving laser
pulse and remain in the same region around x ≈ 40λ0, the electrons
of population C follow the driving pulse when they experience the
combined fields of the colliding pulses, and drift up to x ≈ 45λ0 lon-
gitudinally [see the orange and green dots in Fig. 8(h) corresponding
to t = 70T0 and t = 90T0, respectively]. This relatively long interac-
tion with the laser fields results in significant spin precession and
depolarization.

To confirm the above analysis, we have tracked the dynam-
ics of two representative electrons extracted from each of the three
populations A, B, and C, with the two electrons having nearly the
same initial conditions. Figures 9(a-1) and 9(a-2) show the evolu-
tion of the three components of the momentum px, py, pz and of
the spin sx, sy, sz of the representative electrons of population A.
Figure 9(a-3) shows the evolution in (ct − x, y) space of the rep-
resentative electrons of population A. Figures 9(b-1)–9(b-3) and
9(c-1)–9(c-3) show the same quantities for electrons extracted from
populations B and C, respectively. Figure 9 shows that the momen-

FIG. 10. FBPIC simulation results showing the initial distribution in (x, y) space of injected electrons for the same driving laser and plasma parameters as in Figs. 8 and 9,
but for different colliding pulse parameters: (a) a1 = 0.05 and w1 = 8 μm; (b) a1 = 0.2 and w1 = 8 μm; (c) a1 = 0.05 and w1 = w0 = 4 μm; (d) a1 = 0.05 and w1 = 2 μm.
The rainbow color map indicates the electron longitudinal spin polarization sx at t = 500T0.
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tum and spin dynamics of electrons belonging to populations A and
B are weakly dependent on initial conditions and that, in particular,
the electron spins nearly return to their initial values after interac-
tion [see Figs. 9(a-2) and 9(b-2)]. Notably, for populations A and
B, the electron transverse momentum py,z closely follows the evo-
lution predicted by Eq. (1) in the collision of two plane waves in
vacuum, the anharmonic dynamics being manifested in the longitu-
dinal momentum px, as expected from Eq. (2). By contrast, electrons
from population C show signatures of premature and significant
transverse momentum gain and a strong dependence on initial con-
ditions. Unlike populations A and B, for population C the electron
transverse momentum py,z does not follow the evolution predicted
by Eq. (1), especially for pz [see Fig. 9(c-1)]. This suggests that
finite-transverse-size effects are important for this population. Note
that the theoretical analysis of Sec. III utilizes test particle simula-
tion results where the two colliding pulses are assumed to be plane
waves in vacuum. Thus, deviations are expected if the waist radius
of even one of the two laser pulses is not much larger than the laser
wavelength.

A detailed study of how transverse effects and plasma self-
generated fields influence the transverse momentum gain of the
injected electrons is beyond the scope of the current work, and para-
meter optimization is carried out in a separate work.67 Nevertheless,
it is worth noting that the contribution of electrons from population
C can be controlled by tuning the colliding laser pulse intensity and
waist radius. Naturally, this affects both the total beam charge Q and
its average spin polarization ⟨sx⟩. For instance, when the intensity
of the colliding pulse is increased from a1 = 0.05 [see Fig. 10(a)] to
a1 = 0.2 [see Fig. 10(b)], with all other parameters remaining
unchanged, the number of electrons from population C greatly
increases, and correspondingly the total charge of the electron beam
rises from Q ≈ 2.27 to 20.6 pC. Alternatively, the injection of elec-
trons from population C can be strongly suppressed by reducing the
waist radius of the colliding laser pulse, w1. For instance, by reduc-
ing w1 from w1 = 8 μm to w1 = 4 μm [see Fig. 10(c)] and w1 = 2 μm
[see Fig. 10(d)] and keeping all other parameters fixed, electrons
from population C are suppressed, while the average beam polariza-
tion is enhanced from ⟨sx⟩ ≈ 90.1% to ⟨sx⟩ ≈ 95.3% and ⟨sx⟩ ≈ 97.6%,
respectively.

V. CONCLUSION
We have studied the dynamics of spin-polarized electron injec-

tion in the colliding-pulse scheme. By simple analytical modeling
and multidimensional PIC simulations, we have shown that the elec-
tron injection process can be divided into a first stage of plasma
electron collisionless heating and spin precession followed by a sec-
ond stage of electron trapping and acceleration in the plasma wake.
Using test-particle simulations and Hamiltonian analysis, we have
obtained a simple scaling for determining the electron injection
threshold and the beam polarization as functions of the laser and
plasma parameters. Further study is required to show the depen-
dence on additional parameters, such as relative laser polarization.
Model estimates are in good agreement with quasi-3D FBPIC sim-
ulations over a broad range of experimentally relevant laser para-
meters. While it was already shown that the colliding pulse injection
scheme reliably provides electron beams with excellent quality,60–63

here we have shown that this scheme also enables control of the

spin-polarization degree of the generated beam. Remarkably, the
required relatively low laser power of this scheme, a0 = 2 (a1 = 0.05)
and w0 = 8 μm, corresponding to 8.7 TW (5.4 GW), enable stable,
reliable, and highly controllable operations even at high repetition
rates, which is particularly relevant for applications such as precision
measurements in fundamental physics.92,93
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APPENDIX: SPIN PUSHER

The spin of an electron in electric E and magnetic B fields
precesses according to the Thomas–Bargmann–Michel–Telegdi
(TBMT) equation71,72
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ds
dt
= Ω × s, (A1)

where Ω = ΩT +Ωa, with

ΩT =
∣e∣

mec
(B

γ
− β

1 + γ
× E), (A2)

Ωa =
ae∣e∣
mec
[B − γ

1 + γ
β(β ⋅ B) − β × E]. (A3)

Here, γ =
√

1 + p2/m2
e c2 is the Lorentz factor of the electron,

β = p/γmec is its normalized velocity, and ae ≈ 1.16 × 10−3 is the
electron anomalous magnetic moment. Note that Eqs. (A1)–(A3)
are specific to electrons through their dependence on the anomalous
magnetic moment ae. The leapfrog equation obtained by discretizing
Eq. (A1) and with electromagnetic fields En and Bn at step n is

sn+1/2 − sn−1/2

Δt
= Ωn × sn. (A4)

Here, we have used the following definitions of the midpoint spin
and momentum:

sn = sn+1/2 + sn−1/2

2
, (A5)

pn = pn+1/2 + pn−1/2

2
, (A6)

γn =
√

1 + (pn)2/m2
e c2. (A7)

By inserting these quantities into Eq. (A4), one immediately obtains
∣sn+1/2∣ = ∣sn−1/2∣. Equation (A4) can be rewritten as

sn+1/2 = s′ + (h × sn+1/2), (A8)

where h = ΩnΔt/2 and s′ = sn−1/2 + h × sn−1/2. Now, Eq. (A8) is a
linear system of equations in the unknown sn+1/2, whose solution is

sn+1/2 = o[s′ + (h ⋅ s′)h + h × s′], (A9)

where o = 1/(1 + h2). The same approach discussed above can be
employed for advancing the momentum.94

Following the work described in Refs. 36 and 42, several
schemes utilizing pre-polarized plasma generation via laser-
induced molecular photodissociation37–39 have been proposed.43–55

Although not used in the present article, we have implemented in
FBPIC not only the electron spin degrees of freedom and their evolu-
tion as detailed above, but also the capability to approximately model
the initial spin state of electrons ionized from the photodissociation
products of hydrogen halide molecules such as HCl. In fact, as with
the momentum and position, an initial value for the spin must be
provided for all species of particles.

For molecules such as HCl, which are not considered in this
paper, the unpaired outer-shell electron of H and Cl has an initial
spin along the propagation axis of the dissociation laser after ion-
ization, whereas the many spin-paired inner-shell electrons must be
treated differently. In practice, when an inner-shell electron of Cl
is ionized, its initial spin is randomly oriented in space, to account

of the fact that no orientation is present for these electrons. Ide-
ally, a more sophisticated model would include quantum mechanical
effects when determining the initial spin of each successive electron
emitted by ionization, but our simpler approach suffices for captur-
ing the essential dynamics of polarized electrons obtained with the
technique of laser-induced molecular photodissociation.
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