Spin-polarized electron beam generation in the colliding-pulse injection scheme

Cite as: Matter Radiat. Extremes 8, 064005 (2023); doi: 10.1063/5.0152382
Submitted: 29 March 2023 • Accepted: 22 August 2023 • Published Online: 3 October 2023

Zheng Gong, ${ }^{1, a)}$ (D) Michael J. Quin, ${ }^{1}$ (D) Simon Bohlen, ${ }^{2}$ (D) Christoph H. Keitel, ${ }^{1}$ (D) Kristjan Põder, ${ }^{2}$ (D) and Matteo Tamburini ${ }^{1, b)}$ (D)

AFFILIATIONS
${ }^{1}$ Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
${ }^{2}$ Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
${ }^{\text {a) }}$ Author to whom correspondence should be addressed: gong@mpi-hd.mpg.de
${ }^{\text {b) }}$ Electronic mail: matteo.tamburini@mpi-hd.mpg.de

Abstract

Employing colliding-pulse injection has been shown to enable the generation of high-quality electron beams from laser-plasma accelerators. Here, by using test particle simulations, Hamiltonian analysis, and multidimensional particle-in-cell simulations, we lay the theoretical framework for spin-polarized electron beam generation in the colliding-pulse injection scheme. Furthermore, we show that this scheme enables the production of quasi-monoenergetic electron beams in excess of 80% polarization and tens of pC charge with commercial 10-TW-class laser systems.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0152382

I. INTRODUCTION

Particle accelerators are widely used in materials science, ${ }^{1}$ biology, ${ }^{2}$ medicine, ${ }^{3}$ fusion research, ${ }^{4}$ and industry, ${ }^{5}$ and as sources of intense and energetic photons. ${ }^{6-12}$ In science, one of the most important roles of accelerators is to probe the properties of fundamental forces as well as particle structure in searches for possible physics beyond the Standard Model. ${ }^{13}$ Conventional accelerators have an accelerating gradient limit around $100 \mathrm{MV} / \mathrm{m}$ owing to the electrical breakdown of radio-frequency cavities. By contrast, laser-plasma-based accelerators can support accelerating fields above $100 \mathrm{GV} / \mathrm{m},{ }^{14,15}$ enabling acceleration of electron beams to several GeV energy on centimeter scales. ${ }^{16}$ Several experiments have demonstrated the efficacy and robustness of the laser-wakefield acceleration (LWFA) mechanism. ${ }^{16-23}$ Compared with conventional large-scale accelerators, plasma-based accelerators generally have advantages in costs, size, and achievable peak current. Thus, LWFA is regarded as a promising route to realizing compact lepton colliders. ${ }^{24-26}$

To enable LWFA-based spin-dependent process investigations, which could also benefit high-energy lepton colliders, ${ }^{27,28}$ it is crucial to develop all-optical methods for the controlled and reliable generation of highly polarized electron beams. Recently, theoretical schemes based on the collision of an ultrarelativistic electron beam
with a tailored laser pulse have been proposed as a possible source of spin-polarized electron beams induced by hard-photon emissions in the strong-field QED regime ${ }^{29-34}$ or by helicity transfer. ${ }^{35}$ However, the above methods require high-power and high-intensity laser pulses and are unsuitable for operating at a high repetition rate.

To generate a high-current spin-polarized electron beam, Wen et al. ${ }^{36}$ have put forward a scheme based on the LWFA of prepolarized plasma electrons with a density down ramp for injection. ${ }^{36}$ With 3D particle-in-cell (PIC) simulations, this method has been shown to deliver 0.31 kA electron beams with 90.6% spin polarization by using a $2.1 \times 10^{18} \mathrm{~W} / \mathrm{cm}^{2}$ tens of femtoseconds laser pulse with ~ 2.2 TW power. ${ }^{36}$ In the scheme of Wen et al., a pre-polarized plasma is first produced via laser-induced molecular photodissociation, a method successfully employed in experiments to generate a high-density electron-spin-polarized gas with densities from $10^{16}-10^{19} \mathrm{~cm}^{-3} \cdot 37-39$ Note that, in practice, it is not the entire plasma source that must be pre-polarized, but rather only the restricted injection volume itself. Although the pre-polarized plasma lifetime is of the order of 10 ns , hyperfine coupling results in a periodic electron-to-nucleus spin transfer with ~ 100 ps period. ${ }^{38}$ Thus, the driving laser pulse can arrive tens of picoseconds after plasma pre-polarization, which is easily achievable with existing laser technology. Furthermore, while the alignment of laser pulses inside a plasma source with micrometer
precision in both space and time has been demonstrated (see, e.g., Ref. 40), the laser pulses employed for plasma pre-polarization have low intensity requirements, such that their focal size can be large enough to easily enable spatial overlap. Remarkably, with the advent of 100 nm lasers, ${ }^{41}$ the molecular photodissociation technique might be applied to pure hydrogen, potentially enabling 100% plasma pre-polarization. The method of plasma pre-polarization via laser-induced molecular photodissociation was initially proposed by Hützen et al. and applied to polarized proton beam generation in laser-plasma interaction in Ref. 42. Following these seminal works, other schemes utilizing a pre-polarized plasma were put forward to generate energetic spin-polarized electron (or proton) beams ${ }^{43-55}$ or to investigate polarization effects in inertial confinement fusion. ${ }^{56}$ More recently, Nie et al. ${ }^{57}$ proposed to exploit the spin-dependent ionization cross section of xenon atoms to generate up to $\sim 31 \%$ spin-polarized and 0.8 kA current electron beams in a beam-driven plasma wakefield accelerator. However, the above methods have limitations on the attainable charge or spin polarization of the beam, and no simple route exists to control the generated beam features.

The colliding-pulse injection (CPI) scheme ${ }^{58,59}$ has produced high-quality electron beams of low divergence and energy spread, ${ }^{60-63}$ which are stable and reproducible. ${ }^{60,61,64-66}$ CPI provides many degrees of freedom that permit control over the generated beam features. For instance, the produced electron beam energy, charge, and energy spread are tunable by adjusting the position of the collision point in the plasma source, ${ }^{60}$ or the relative polarization between the driving and colliding laser pulses. ${ }^{62}$ This renders CPI a robust and versatile alternative to single-pulse LWFA to reliably

FIG. 1. Schematic of colliding pulse injection. (a) Two colliding laser pulses irradiate a pre-polarized underdense plasma with longitudinal density profile $n_{e}(x)$ shown by the black dashed line. (b) Some plasma electrons (blue) undergo collisionless heating and gain residual energy and longitudinal momentum (red). (c) The electrons that have gained sufficient longitudinal momentum (red) to satisfy the injection criterion are trapped and subsequently accelerated in the wakefield.
generate high-quality, high-current spin-polarized electron bunches from a pre-polarized plasma, as shown below (see also Ref. 67). In CPI, a driving laser pulse with relativistic intensity induces a wakefield, while a sub-relativistic-intensity colliding pulse enables injection in the wake. As schematically illustrated in Fig. 1, the interaction process consists of two stages: (i) stochastic collisionless heating of plasma electrons by the two colliding laser pulses; (ii) trapping and acceleration of some energized electrons by the wakefield excited by the driving laser pulse.

In this article, we develop a model with an effective Hamiltonian that characterizes the electron dynamics, validate its predictions against quasi-3D PIC simulations, and show that CPI enables the generation of high-current and highly spin-polarized electron beams with controllable average spin polarization. The optimization of the beam features, including its charge and spin polarization, is studied in more detail in Ref. 67. Our work is arranged in four sections. In Sec. II, we present 2D PIC simulation results showing the plasma electron dynamics with and without the colliding laser pulse. In Sec. III, we discuss electron heating and the injection criterion. In Sec. IV, quasi-3D PIC simulations under the assumption of near cylindrical symmetry are performed to validate the theoretical model and further elucidate the electron injection dynamics and its influence on the charge and polarization of the electron beam. Our results are summarized in Sec. V, while the details of the particle spin pusher that we implemented in the spectral numerical-dispersion-free quasi-3D PIC code FBPIC ${ }^{68}$ are detailed in the Appendix.

II. 2D SIMULATIONS

Our 2D simulations are performed using the PIC code EPOCH, ${ }^{69}$ where we implemented the electron spin dynamics. Following Ref. 36, we exploit Ehrenfest's theorem ${ }^{70}$ to describe the spin of an electron in a quasiclassical state with a vector \boldsymbol{s}, where $|\boldsymbol{s}|=1$. The evolution of \boldsymbol{s} is determined by the Thomas-Bargmann-Michel-Telegdi (TBMT) equation, ${ }^{71,72}$ and in our EPOCH simulations is implemented via the Boris pusher method $^{73-76}$ (see below and the Appendix for an alternative implementation). Given the relatively low laser pulse intensities considered here, radiation reaction effects ${ }^{77,78}$ as well as other spin effects such as the Stern-Gerlach force ${ }^{79,80}$ and the Sokolov-Ternov effect ${ }^{48,81}$ are negligible. In simulations, an underdense plasma is irradiated by a relativistic-intensity driving laser pulse and a subrelativistic-intensity colliding laser pulse. The driving pulse is linearly polarized along the y axis, incoming from the left boundary of the computational box, and has a Gaussian transverse and longitudinal profile with $w_{0}=8 \mu \mathrm{~m}$ waist radius, $I_{0}=8.7$ $\times 10^{18} \mathrm{~W} / \mathrm{cm}^{2}$ peak intensity, and $\tau_{0}=25 \mathrm{fs}$ duration full width at half maximum (FWHM) of the intensity. Its wavelength is $\lambda_{0}=0.8 \mu \mathrm{~m}$, and the corresponding normalized field amplitude is $a_{0} \approx 0.85 \lambda_{0}[\mu \mathrm{~m}] \sqrt{I_{0}\left[10^{18} \mathrm{~W} / \mathrm{cm}^{2}\right]} \approx 2$. The colliding pulse has the same parameters as those of the driving pulse, except for the peak intensity, which is $I_{1}=5.4 \times 10^{17} \mathrm{~W} / \mathrm{cm}^{2}$, corresponding to a normalized field amplitude $a_{1} \approx 0.5$.

The computational box size is $120 \lambda_{0}(x) \times 70 \lambda_{0}(y)$ and is uniformly divided in cells with a size of $\lambda_{0} / 20(x) \times \lambda_{0} / 20(y)$. The prepolarized plasma has a plateau electron density profile $n_{e}(x)=n_{e, 0}$
$=10^{18} \mathrm{~cm}^{-3}$ for $x>x_{1}$ and a linear up-ramp density profile for $x_{0}<x<x_{1}$, where $x_{0}=0$ and $x_{1}=20 \lambda_{0}$ [see Fig. 1(a)]. In the simulation, 32 particles per cell are used for electrons, and ions are treated as immobile. The focus of both the driving and the colliding laser pulses is set to be located at $x=35 \lambda_{0}$ in vacuum. The simulation box moves at the speed of light c, and open boundary conditions are adopted for both fields and particles. The group velocity of the driving laser pulse propagating inside the underdense plasma is $v_{g}=c \sqrt{1-\omega_{p e}^{2} /\left(\tilde{\gamma} \omega_{0}^{2}\right)}$, where $\omega_{p e}=\sqrt{4 \pi n_{e} e^{2} / m_{e}}$ is the plasma frequency, $\omega_{0}=2 \pi c / \lambda_{0}$ is the laser angular frequency, and $\tilde{\gamma} \approx \sqrt{1+a_{0}^{2} / 2}$ is the cycle-averaged Lorentz factor of the plasma electrons. Here, m_{e} and e are the electron mass and charge, respectively.

To illustrate the effect of the colliding laser pulse on the electron dynamics, we compare the 2D PIC simulation results obtained with and without the colliding pulse. As displayed in Fig. 2, a plasma cavity with length $c / \omega_{p e} \approx 30 \mu \mathrm{~m}$ is sustained behind the driving pulse. In the presence of the colliding pulse, an electron bunch is stably injected at the rear of the cavity, resulting in $\sim 15 \mathrm{MeV}$ energy gain over $200 \mu \mathrm{~m}$ propagation distance, whereas essentially no electron injection is observed without the colliding pulse (see Fig. 2). The corresponding particle tracking results from 2D PIC simulations are displayed in Fig. 3. For the case without a colliding pulse, the background plasma electrons merely experience the smooth oscillation excited by the driving laser ponderomotive force, and no background electrons are injected into the wakefield cavity [Figs. 3(a)-3(d)]. These electrons do not have a net energy gain, and their growing depolarization over time is attributed to the spin precession induced by the magnetic field while traversing the plasma cavity [see Fig. 3(d)]. By contrast, with a colliding pulse, a fraction of the electrons originating from the central region are injected into the first wakefield cavity and subsequently undergo acceleration [Figs. 3(e)-3(h)]. Electron injection occurs owing to the electrons' residual longitudinal momentum $p_{x}>0$ after interacting with the colliding laser fields [see Fig. 3(g) and below]. The electron beam spin polarization is primarily determined by the transient chaotic dynamics induced during the driving- and colliding-pulse

FIG. 2. 2D PIC simulation results. The driving and colliding laser pulse intensities are $a_{0}=2$ and $a_{1}=0.5$, respectively. Both pulses have $w_{0}=8 \mu \mathrm{~m}$ waist radius and $\tau_{0}=25$ fs duration. (a) Snapshot of the electron plasma density n_{e} and the laser electric field E_{y} at time $t=100 T_{0}$. (b) Same as (a), but at time $t=340 T_{0}$. In (a) and (b), the upper and lower half-panels correspond to the cases respectively with and without the colliding laser pulse.
interaction, while it is almost unchanged during the acceleration phase [see Fig. 3(h)]. In contrast to the spin dynamics observed in the down-ramp injection scheme, ${ }^{36}$ in CPI no strong correlation between the accelerated electrons' longitudinal spin polarization loss $1-s_{x}$ and their initial transverse coordinate y is observed [see Fig. 3(h) and Sec. IV].

III. THEORETICAL ANALYSIS

In the following, we employ a two-stage model to characterize the electron dynamics and elucidate the injection process.

A. Electron collisionless heating in colliding pulses

It is known that, in vacuum, an electron initially at rest remains at rest after interacting with a laser pulse, if the pulse can be approximated as a plane wave. Thus, in a one-dimensional model where plasma fields are small compared with the laser fields, the electron longitudinal residual momentum δp_{x} mainly stems from the interaction with the fields of the two colliding laser pulses. The residual momentum δp_{x} is of critical importance in determining the electron injection into the forward moving plasma cavity. If the plane-wave fields are derived from a vector potential expressed as $\boldsymbol{A}_{0,1}$, then the corresponding electric and magnetic fields are $\boldsymbol{E}_{0,1}=-\partial \boldsymbol{A}_{0,1} / \partial c t$ and $\boldsymbol{B}_{0,1}=\nabla \times \boldsymbol{A}_{0,1}$, where subscripts 0 and 1 denote the driving and colliding laser pulses, respectively. By considering for simplicity the vector potentials of monochromatic plane waves $\boldsymbol{A}_{0}=a_{0}\left(m_{e} c^{2} /|e|\right) \sin \phi \hat{\boldsymbol{e}}_{y}$ and $\boldsymbol{A}_{1}=a_{1}\left(m_{e} c^{2} /|e|\right) \sin \left(\phi+2 k_{0} x+\phi_{1}\right) \hat{\boldsymbol{e}}_{y}$, with $\phi=\omega_{0} t-k_{0} x$ being the light front time, ϕ_{1} the initial phase, $\hat{\boldsymbol{e}}_{y}$ the unit vector along the y direction, and $k_{0}=\omega_{0} / c$ the wavenumber, the electron dynamics inside the two colliding laser pulse fields are determined by

$$
\begin{align*}
& \frac{d p_{y}}{d \phi}=\frac{|e|}{c} \frac{d}{d \phi}\left(A_{0, y}+A_{1, y}\right) \tag{1}\\
& \frac{d p_{x}}{d \phi}=-\frac{|e|}{\omega_{0}} \frac{p_{y}}{p_{-}}\left(B_{0, z}+B_{1, z}\right), \tag{2}
\end{align*}
$$

where $\quad p_{-} \equiv \gamma_{e} m_{e} c-p_{x}, \quad d \phi / d t=p_{-} \omega_{0} / \gamma_{e} m_{e} c, \quad B_{0, z}$ $=-a_{0}\left(m_{e} \omega_{0} c /|e|\right) \cos \phi$, and $B_{1, z}=a_{1}\left(m_{e} \omega_{0} c /|e|\right) \cos \left(\phi+2 k_{0} x\right.$ $+\phi_{1}$). From Eq. (1), one immediately derives an integral of motion for the transverse momentum $p_{y}=|e|\left(A_{0, y}+A_{1, y}\right) / c$, such that Eq. (2) becomes

$$
\begin{align*}
\frac{d p_{x}}{d \phi}= & \frac{m_{e}^{2} c^{2}}{p_{-}}\left[a_{0}^{2} \cos \phi \sin \phi+a_{0} a_{1} \sin \left(2 k_{0} x+\phi_{1}\right)\right. \\
& \left.-a_{1}^{2} \cos \left(\phi+2 k_{0} x+\phi_{1}\right) \sin \left(\phi+2 k_{0} x+\phi_{1}\right)\right] \tag{3}
\end{align*}
$$

The terms containing $2 k_{0} x$ in Eq. (3) hint at a strong dependence on initial conditions. In fact, previous studies have already shown that the resulting dynamics are chaotic, ${ }^{82}$ and that plasma heating due to stochastic acceleration can occur inside the counterpropagating laser pulses. ${ }^{83}$

To obtain the dependence of the residual momentum δp_{x} and spin depolarization δs_{x} on the laser parameters, we therefore resort

FIG. 3. Particle tracking results from 2D PIC simulations with the same parameters as those in Fig. 2. The rainbow color map shows the initial electron's transverse position $\left|y_{t=0}\right|$. The black dashed line indicates the value obtained by averaging over the displayed trajectories. (a) and (e) Electron trajectories in the wake-frame coordinates (ξ, y). (b) and (f) Temporal evolution of the electron energy γ_{e}. (c) and (g) Longitudinal electron momentum p_{x}. (d) and (h) Longitudinal spin component s_{x} of the electron. (a)-(d) correspond to the case without the colliding laser pulse, and (e)-(h) to the case with the colliding pulse.
to test-particle simulations. ${ }^{84-86}$ In our test-particle simulations, the two laser pulses are modeled as plane waves with electric fields

$$
\begin{gather*}
\frac{|e| E_{y, 0}}{m_{e} \omega_{0} c}=a_{0} \exp \left\{-\left(\frac{\phi-\phi_{0}}{\omega_{0} \tau_{0} / \sqrt{2 \ln 2}}\right)^{2}\right\} \cos \phi, \tag{4}\\
\frac{|e| E_{y, 1}}{m_{e} \omega_{0} c}=a_{1} \exp \left\{-\left(\frac{\phi+2 k_{0} x-\phi_{1}}{\omega_{0} \tau_{0} / \sqrt{2 \ln 2}}\right)^{2}\right\} \cos \left(\phi+2 k_{0} x\right), \tag{5}
\end{gather*}
$$

and magnetic fields $B_{0, z}=E_{0, y}$ and $B_{1, z}=-E_{1, y}$. The laser wavelength and period are denoted by $\lambda_{0}=0.8 \mu \mathrm{~m}$ and $T_{0}=\lambda_{0} / c \approx 2.67 \mathrm{fs}$, respectively, while τ_{0} is the FWHM of the intensity. Here, $\phi_{0}=0$ and $\phi_{1}=100 \pi$ determine the initial positions of the peaks of the driving and colliding laser pulses, which correspond to 0 and $50 \lambda_{0}$, respectively. The initially at rest and uniformly distributed electrons are located in the region $20 \lambda_{0} \leqslant x \leqslant 30 \lambda_{0}$. In the calculations of the electron momentum \boldsymbol{p} and $\operatorname{spin} \boldsymbol{s}$, an explicit Boris pusher method is utilized, where the timestep is $\Delta t=5 \times 10^{-4} T_{0}$. This timestep satisfies the stringent temporal criteria for electron acceleration. ${ }^{87}$

For $\tau_{0}=25 \mathrm{fs}$, the test-particle simulation results for the residual longitudinal momentum δp_{x} and spin variation δs_{x} are shown in Fig. 4. Both δp_{x} and δs_{x} are calculated by averaging over the forwardmoving electrons after they have separated from the two colliding pulses. By numerically fitting the results over the range $1 \leqslant a_{0} \leqslant 3$ and $10^{-2} \leqslant a_{1} \leqslant 1$, we obtain the scalings $\delta p_{x} \approx 0.29 a_{0}^{2} a_{1} m_{e} c$ and $\delta s_{x} \approx 0.25 a_{0} a_{1}$. As shown in Fig. 4, the curves obtained from the above simple scaling model agree fairly well with the test-particle simulation results.

It is worth emphasizing that, in general, stochastic heating, and consequently δp_{x} and δs_{x}, are also expected to depend on the laser pulse duration τ_{0}. To examine the impact of τ_{0}, for each τ_{0} in the range $6.2 \mathrm{fs} \leqslant \tau_{0} \leqslant 43.9 \mathrm{fs}$, we assume scalings of the form $\delta p_{x}=\kappa_{p} a_{0}^{n_{0}} a_{1}^{n_{1}} m_{e} c$ and $\delta s_{x}=\kappa_{s} a_{0}^{m_{0}} a_{1}^{m_{1}}$, where $\kappa_{p, s}, n_{0,1}$, and $m_{0,1}$ are constants obtained by numerically fitting the residual longitudinal momentum and electron spin. Tables I and II report the obtained coefficients. Table I highlights a pronounced dependence of the exponent n_{0} on the laser pulse duration, which originates from an increased stochastic heating and longitudinal momentum gain of electrons for longer-duration laser pulses. Given the relative simplicity of the obtained scaling, this is employed for quantitative predictions of the electron injection threshold and of the final beam polarization, which are validated against PIC simulations (see below).

B. Hamiltonian analysis of electron trapping

The second stage of electron injection corresponds to electron trapping into the subluminal wakefield, which is investigated through Hamiltonian analysis.

In LWFA, electrons gain energy from the longitudinal electric field of the Langmuir wave excited by the ponderomotive force of the laser pulse. This is modeled, for simplicity, by considering the 1D dynamics of electrons in the moving frame of the first cavity in the wake of the laser pulse. The drifting velocity of the plasma cavity v_{d} equals the group velocity of the laser pulse inside the underdense plasma v_{g}, i.e., $v_{d}=c \sqrt{1-\omega_{p e}^{2} /\left(\tilde{\gamma} \omega_{0}^{2}\right)}$. In the cavityframe coordinate $\xi \equiv x-v_{d} t$, the longitudinal electric field $E_{x}(\xi)$

FIG. 4. Test-particle simulation results. Each color corresponds to a different driving laser pulse amplitude a_{0}, and the horizontal axis gives the colliding laser pulse amplitude a_{1}. (a) Residual longitudinal momentum δp_{x} after the collision of the two plane-wave pulses. (b) Spin polarization loss $\delta s_{x} \equiv 1-s_{x}$. In both panels, dashed lines display the prediction obtained by numerical fitting the simulation data as $\delta p_{x}=0.29 a_{0}^{2} a_{1} m_{e} c$ and $\delta s_{x}=0.25 a_{0} a_{1}$.

TABLE I. Parameters of the scaling $\delta p_{x} \approx \kappa_{p} a_{0}^{n_{0}} a_{1}^{n_{1}} m_{e} c$ calculated by numerical fitting of the results of test-particle simulations.

$\tau_{0}(\mathrm{fs})$	6.2	12.6	18.8	25.0	31.4	37.7	43.9
n_{0}	0.75	1.25	2.0	2.0	2.0	3.0	3.25
n_{1}	0.75	0.75	1.0	1.0	1.0	1.0	1.0
κ_{p}	0.30	0.26	0.27	0.29	0.32	0.27	0.28

TABLE II. Parameters of the scaling $\delta s_{x} \approx \kappa_{s} a_{0}^{m_{0}} a_{1}^{m_{1}}$ calculated by numerical fitting of the results of test-particle simulations.

$\tau_{0}(\mathrm{fs})$	6.2	12.6	18.8	25.0	31.4	37.7	43.9
m_{0}	1.0	1.0	1.0	1.0	1.0	1.5	1.5
m_{1}	1.0	1.0	1.0	1.0	1.0	1.0	1.0
κ_{s}	0.10	0.17	0.19	0.25	0.27	0.30	0.36

depends only on ξ. The electron dynamics are characterized by the equations ${ }^{88}$

$$
\begin{gather*}
\frac{d p_{x}}{d t}=-|e| E_{x}(\xi) \tag{6}\\
\frac{d \xi}{d t}=\frac{p_{x}}{m_{e} \sqrt{1+\left(p_{x} / m_{e} c\right)^{2}}}-v_{d} \tag{7}
\end{gather*}
$$

where v_{d} is independent of time. The electric potential of the longitudinal wakefield can be derived as $\varphi(\xi)=-\int E_{x}(\xi) d \xi$ such that $E_{x}(\xi)=-\partial \varphi(\xi) / \partial \xi$. This allows us to determine the electron motion in the moving wakefield from the conserved Hamiltonian

$$
\begin{equation*}
\mathcal{H}\left(\xi, p_{x}\right)=-|e| \varphi(\xi)+c \sqrt{m_{e}^{2} c^{2}+p_{x}^{2}}-v_{d} p_{x} \tag{8}
\end{equation*}
$$

Indeed, Eqs. (6) and (7) can be obtained from Hamilton's equations $d p_{x} / d t=-\partial \mathcal{H}\left(\xi, p_{x}\right) / \partial \xi$ and $d \xi / d t=\partial \mathcal{H}\left(\xi, p_{x}\right) / \partial p_{x}$. By setting $d p_{x} / d t=0$ and $d \xi / d t=0$, we find a fixed point $\left(\xi^{*}, p_{x}^{*}\right)$ in $\left(\xi, p_{x}\right)$ phase space where ξ^{*} satisfies the condition $E\left(\xi^{*}\right)=0$ and $p_{x}^{*}=v_{d} m_{e} / \sqrt{1-v_{d}^{2} / c^{2}}$. This fixed point corresponds to a scenario in which an electron with velocity $v_{x}=v_{d}$ is comoving with the wakefield and does not exchange energy with the longitudinal electric field.

We are interested in the electron dynamics inside the first cavity of the laser-driven wake. The corresponding longitudinal electric field can be approximated as [see Fig. 5(a)]

$$
E_{x}(\xi)= \begin{cases}0 & \text { if } \xi \leqslant \xi_{4} \tag{9}\\ -E_{0} \frac{\xi-\xi_{4}}{\xi_{3}-\xi_{4}} & \text { if } \xi_{4}<\xi \leqslant \xi_{3} \\ -E_{0} \frac{\xi_{0}-\xi}{\xi_{0}-\xi_{3}} & \text { if } \xi_{3}<\xi \leqslant \xi_{0} \\ E_{0} \frac{\xi-\xi_{0}}{\xi_{1}-\xi_{0}} & \text { if } \xi_{0}<\xi \leqslant \xi_{1} \\ E_{0} \frac{\xi_{2}-\xi}{\xi_{2}-\xi_{1}} & \text { if } \xi_{1}<\xi \leqslant \xi_{2} \\ 0 & \text { if } \xi_{2}<\xi\end{cases}
$$

where E_{0} is the peak value of $\left|E_{x}(\xi)\right|$ and is reached at $\xi_{1,3}$, while $\xi_{2,4}$ denote the boundaries of the cavity. As shown in Fig. 5(a), $\xi_{4}=-\xi_{2}$ and $\xi_{3}=-\xi_{1}$ as a result of the symmetry of the field with respect to $\xi_{0}=0$. Accordingly, the potential is calculated through $\varphi(\xi)=-\int_{-\infty}^{\xi} E(\xi) d \xi$ with $\varphi(-\infty)=0$, which gives

$$
\varphi(\xi)= \begin{cases}0 & \text { if } \xi \leqslant \xi_{4} \tag{10}\\ E_{0} \frac{\left(\xi-\xi_{4}\right)^{2}}{2\left(\xi_{3}-\xi_{4}\right)} & \text { if } \xi_{4}<\xi \leqslant \xi_{3} \\ E_{0} \frac{\xi_{0}-\xi_{4}}{2}-E_{0} \frac{\left(\xi_{0}-\xi\right)^{2}}{2\left(\xi_{0}-\xi_{3}\right)} & \text { if } \xi_{3}<\xi \leqslant \xi_{0} \\ E_{0} \frac{\xi_{2}-\xi_{0}}{2}-E_{0} \frac{\left(\xi-\xi_{0}\right)^{2}}{2\left(\xi_{1}-\xi_{0}\right)} & \text { if } \xi_{0}<\xi \leqslant \xi_{1} \\ E_{0} \frac{\left(\xi-\xi_{2}\right)^{2}}{2\left(\xi_{2}-\xi_{1}\right)} & \text { if } \xi_{1}<\xi \leqslant \xi_{2} \\ 0 & \text { if } \xi_{2}<\xi\end{cases}
$$

For definiteness and without loss of generality, we consider the following parameters: $v_{d} / c \approx 0.9997, \xi_{0}=0, \xi_{1}=-\xi_{3}=10.4 \mu \mathrm{~m}$, $\xi_{2}=-\xi_{4}=13.0 \mu \mathrm{~m}$, and $E_{0}=0.022 m_{e} c \omega_{0} /|e| \approx 96 \mathrm{GV} / \mathrm{m}$. These parameters are similar to those identified in LWFA experiments where GeV electron beams are produced from a centimeterscale underdense plasma. ${ }^{89}$ The corresponding minimum electron potential energy is $-|e| \varphi\left(\xi_{0}\right) /\left(m_{e} c^{2}\right) \approx 0.9$.

For the above-mentioned parameters, Fig. 5(a) displays the profiles of the electric field $E_{x}(\xi)$ and potential $\varphi(\xi)$ obtained from

FIG. 5. Illustration of the Hamiltonian model. (a) Electron potential energy - $|e| \varphi$ (black dashed line) and longitudinal electric field E_{x} (blue solid line) as functions of the wake-frame coordinate ξ. (b) Value of the Hamiltonian $\mathcal{H}\left(\xi, p_{x}\right)$ in Eq. (8) in units of electron rest energy $m_{e} c^{2}$ (brown color map) and its contour levels (black dashed lines). The rainbow color lines display the evolution in the (ξ, p_{x}) phase space of the electrons initially located at $\xi=10 \mu \mathrm{~m}$. (a) and (b) share the same horizontal axis.

Eqs. (9) and (10), respectively. Figure 5(b) displays the corresponding values of the Hamiltonian $\mathcal{H}\left(\xi, p_{x}\right)$, as well as the phase space evolution of a group of electrons initially located at $\xi=10 \mu \mathrm{~m}$ with momentum $m_{e} c \leqslant p_{x} \mid t=0 \leqslant 10 m_{e} c$. Their evolution in $\left(\xi, p_{x}\right)$ clearly shows that there exists a longitudinal momentum threshold $p_{\text {th }}$ for the occurrence of electron trapping in the wake. This allows us to determine whether an energized electron gets trapped by the wakefield $E_{x}(\xi)$ or slides away from the potential cavity [see Fig. 5(b)]. The electrons with $\left.p_{x}\right|_{t=0}<p_{\text {th }}$ are not sufficiently fast to be trapped by the forward-moving wake. Thus, they slide away from the wake cavity and are not injected. These electrons are termed untrapped electrons. By contrast, the electrons with $\left.p_{x}\right|_{t=0}>p_{\text {th }}$ are trapped by the potential well $\varphi(\xi)$ and subsequently efficiently accelerated to an energy of $\sim 400 \mathrm{MeV}$ in the region of the cavity where the field $E_{x}(\xi)$ is negative and therefore accelerating for electrons. These electrons are termed trapped electrons. To determine the threshold $p_{\text {th }}$, we consider the contour of $\mathcal{H}\left(\xi, p_{x}\right)$ between the separatrix point $\left(\xi_{4}, p_{d}\right)$ and the threshold $\left(\xi, p_{\text {th }}\right)$, which is given by $\mathcal{H}\left(\xi, p_{\text {th }}\right)$ $=\mathcal{H}\left(\xi_{4}, p_{d}\right)$. This gives

$$
\begin{equation*}
\left(1-\beta_{d}^{2}\right)\left(\frac{p_{\mathrm{th}}}{m_{e} c}\right)^{2}-2 \beta_{d} \mathcal{A}\left(\frac{p_{\mathrm{th}}}{m_{e} c}\right)+1-\mathcal{A}^{2}=0, \tag{11}
\end{equation*}
$$

where $\beta_{d}=v_{d} / c$,

$$
\mathcal{A}=\frac{|e| \varphi(\xi)}{m_{e} c^{2}}+\frac{1}{\gamma_{d}}, \quad \gamma_{d}=\frac{1}{\sqrt{1-\beta_{d}^{2}}}
$$

and $p_{d}=\gamma_{d} v_{d} m_{e} c$. The two solutions $p_{\mathrm{th}}^{ \pm}$of Eq. (11) are

$$
\begin{equation*}
\frac{p_{\mathrm{th}}^{ \pm}}{m_{e} c}=\frac{\beta_{d} \mathcal{A} \pm \sqrt{\beta_{d}^{2}+\mathcal{A}^{2}-1}}{1-\beta_{d}^{2}} \tag{12}
\end{equation*}
$$

By employing the parameters listed below Eq. (10), we obtain $|e| \varphi(\xi) /\left(m_{e} c^{2}\right) \approx-0.24$ at $\xi=10 \mu \mathrm{~m}$ and $\gamma_{d} \approx 41.6$. Thus, the momentum threshold for electron trapping is $p_{\mathrm{th}}^{-} \approx 1.7 m_{e} c$, which agrees well with the numerically calculated electron trajectories in Fig. $5(\mathrm{~b})$. The conjugate root $p_{\mathrm{th}}^{+} \approx 917 m_{e} c$ corresponds to the attainable energy of an electron trapped with momentum near the threshold after it undergoes acceleration in the cavity and returns to $\xi=10 \mu \mathrm{~m}$ [see Fig. 5(b)]. In this description, the maximum and minimum longitudinal momenta are reached at $\xi_{0}=0$. Note that while the simplified longitudinal electric field profile in Eq. (9) does not precisely match that obtained in PIC simulations [compare Figs. 5(a) and 6(a)], our analysis and model are not sensitive to the exact form of the longitudinal electric field. In fact, the injection criterion $p_{\text {th }}^{-}$ and the maximum attainable energy $\gamma_{e}^{\max } \sim p_{\mathrm{th}}^{+}$in Eq. (12) are determined once the potential $\varphi(\xi)$ around the peak of the longitudinal electric field and the drifting velocity v_{d} have been given (see Sec. IV for details).

IV. MODEL VALIDATION

To validate the model presented in Sec. III and the injection condition $\delta p_{x}>p_{\mathrm{th}}^{-}$, with p_{th}^{-}defined in Eq. (12), we track the evolution of an electron with initial position $y \approx 0$ in the 2D PIC simulations of Sec. II and investigate its evolution both with and without the colliding pulse. The corresponding results are displayed in Fig. 6, where the magenta and green lines correspond to the cases respectively with and without the colliding pulse. In both cases, the electron trajectory in $\left(\xi, p_{x}\right)$ space shows that its evolution nearly follows the contour of the Hamiltonian ${ }^{90}$ after the electron interaction with the pulses ends [see Fig. 6(b)]. In the case without the colliding pulse, the electron trajectory in $\left(\xi, p_{x}\right)$ space always remains below the separatrix, and the electron is not trapped and readily slides away from the plasma cavity. In the case with the colliding pulse, however, the electron has a residual longitudinal momentum $\delta p_{x}>0$. The residual momentum satisfies the injection criterion, namely, $\delta p_{x}>p_{\mathrm{th}}^{-}$, and the electron gets trapped in the cavity [see Fig. 6(b)]. For the traced electron, the longitudinal spin polarization s_{x} is modulated by the colliding laser fields, but returns nearly to its original value after the passage of the laser pulses. Moreover, s_{x} does not significantly change during the subsequent acceleration stage inside the cavity.

For a homogeneous plasma, one can infer $p_{\mathrm{th}}^{ \pm}$in Eq. (12) with the following estimates: $\beta_{d}=\sqrt{1-\mathcal{S}}, 1 / \gamma_{d}=\sqrt{\mathcal{S}}$, and \mathcal{A} $=\rho \tilde{\varphi}+1 / \gamma_{d}$, where $\mathcal{S} \equiv n_{e} / \tilde{\gamma} n_{c}, n_{c}=m_{e} \omega_{0}^{2} / 4 \pi e^{2}, \quad \tilde{\varphi}=|e| \varphi_{0} / m_{e} c^{2}$, $\varphi_{0}=4 \pi|e| n_{e}\left(c / \omega_{p e}\right)^{2}$, and $\tilde{\gamma}=\sqrt{1+a_{0}^{2} / 2}$. The coefficient $0<\rho \lesssim 1$ accounts for the unknown position of the electron inside the cavity when the electron-laser pulses interaction ends [see the magenta line in Fig. 6] and for the minimum of the actual potential, which is simply estimated as φ_{0}. As will become clear below, in practice ρ is extracted from quasi-3D PIC simulations. Now, p_{th}^{-}in Eq. (12) can

FIG. 6. Particle tracking results from 2D PIC simulations. The driving- and collidinglaser pulse intensities are $a_{0}=2$ and $a_{1}=0.5$, respectively. Both laser pulses have $w_{0}=8 \mu \mathrm{~m}$ waist radius and $\tau_{0}=25$ fs duration. The magenta and green lines correspond to the cases respectively with and without the colliding laser pulse. (a) Electron trajectories in (ξ, y) space. The blue-red color map displays the longitudinal electric field. The black dashed line plots E_{x} at $y=0$. (b) Electron trajectories in $\left(\xi, p_{x}\right)$ space. The brown color map shows the normalized value of the Hamiltonian \mathcal{H} from Eq. (8), where the potential $\varphi(\xi)$ is obtained from the E_{x} at $y=0$ of the simulation [see the black dashed line in (a)]. (c) Evolution of the longitudinal spin s_{x}.
be recast as

$$
\begin{equation*}
\frac{p_{\mathrm{th}}^{-}}{m_{e} c} \approx \frac{\sqrt{1-\mathcal{S}}(\rho \tilde{\varphi}+\sqrt{\mathcal{S}})-\sqrt{\rho^{2} \tilde{\varphi}^{2}+2 \rho \tilde{\varphi} \sqrt{\mathcal{S}}}}{\mathcal{S}} \tag{13}
\end{equation*}
$$

By combining Eq. (13) with the scaling of the residual longitudinal momentum $\delta p_{x} \approx \kappa_{p} a_{0}^{n_{0}} a_{1}^{n_{1}} m_{e} c$ (see Table I), the injection criterion $\delta p_{x}>p_{\text {th }}^{-}$becomes $a_{1}>a_{1}^{*}$, where

$$
\begin{equation*}
a_{1}^{*}=\left[\frac{\sqrt{1-\mathcal{S}}(\rho \tilde{\varphi}+\sqrt{\mathcal{S}})-\sqrt{\rho^{2} \tilde{\varphi}^{2}+2 \rho \tilde{\varphi} \sqrt{\mathcal{S}}}}{\kappa_{p} a_{0}^{n_{0}} \mathcal{S}}\right]^{1 / n_{1}} \tag{14}
\end{equation*}
$$

To test the validity of the scaling predicted by the injection criterion in Eq. (14) in a more realistic 3D scenario, we perform parametric scans with the spectral quasi-3D PIC code FBPIC ${ }^{68}$ with $N_{m}=2$ azimuthal modes, where $N_{m}>1$ accounts for departures from cylindrical symmetry in the fields. The simulation domain is a cylinder with a size of $x \times r=50 \times 25 \mu \mathrm{~m}^{2}$, with cell size $\Delta x=1 / 80 \mu \mathrm{~m}$ and $\Delta r=1 / 40 \mu \mathrm{~m}$. Similarly to the 2D EPOCH simulations presented in Sec. II, the two colliding laser pulses are linearly
polarized along the y axis with $\lambda_{0}=0.8 \mu \mathrm{~m}$ wavelength, and have a Gaussian profile both in space and in time with $\tau_{0}=25$ fs FWHM of the intensity duration and $w_{0}=8 \mu \mathrm{~m}$ waist radius. The driving laser pulse normalized amplitude is $1 \leqslant a_{0} \leqslant 2.5$, while the colliding laser pulse normalized amplitude is $0.01 \leqslant a_{1} \leqslant 0.2$. As in Sec. II, the plasma is underdense, with a linearly growing density profile followed by a plateau with density $n_{e, 0}=10^{18} \mathrm{~cm}^{-3}$ for $x>x_{1}$ [see Fig. 1(a)]. The numbers of macroparticles per cell per species along the cylindrical coordinate axes z, r, and θ are $p_{n, z}=4, p_{n, r}=4$, and $p_{n, \theta}=4$, respectively. Note that the spectral cylindrical representation implemented in FBPIC prevents numerical Cherenkov radiation (NCR), thus permitting both fast and accurate simulations. To mitigate NCR, a finite difference Cartesian 3D code would require very small spatial and temporal steps, greatly increasing the computational cost. Simulations with $N_{m}=3$ did not show significant differences with respect to $N_{m}=2$, thus indicating that possible effects beyond cylindrical symmetry are properly accounted for. For simulations with laser pulses carrying a high orbital angular momentum, not considered in the present work, the inclusion of several azimuthal modes would be required. In post-processing, the electron beam charge is self-consistently calculated from the weight of each macro-electron. As the FBPIC simulation domain has a cylindrical geometry, the macroparticle weight w is calculated as $w=n r d \theta d r d z$, where n is the plasma number density, r is the radial coordinate, and $d \theta, d r$, and $d z$ are the grid steps along the azimuthal, radial, and longitudinal directions, respectively (see Ref. 91 for details of the FBPIC algorithm and features).

Figure 7 displays the model and FBPIC simulation results obtained with the above-mentioned parameters. In particular, Figs. 7(a) and 7(b) show the generated electron beam charge \mathcal{Q} and average longitudinal spin polarization $\left\langle s_{x}\right\rangle$, respectively, while Fig. 7 (c) shows the average beam polarization as predicted by the model, $\left\langle s_{x}\right\rangle=1-\kappa_{s} a_{0} a_{1}$ (see Table II). The black dashed line in Figs. 7(a)-7(c) plots a_{1}^{*}, which is the injection threshold according to Eq. (14), where ρ is used as a fitting parameter to the quasi-3D FBPIC simulations, which gives $\rho=0.55$. Remarkably, the scaling obtained from the model is in good agreement with the simulation results. Indeed, both the predicted scaling for electron injection as obtained in Eq. (14), which is set once ρ has been fixed, and the longitudinal beam polarization as estimated by assuming the simple scaling $\delta s_{x} \approx \kappa_{s} a_{0}^{m_{0}} a_{1}^{m_{1}}$ with the coefficients extracted from test-particle simulations (see Table II), are in good agreement with simulations (see Fig. 7).

Figure 7 shows that while highly polarized beams are generated with laser field amplitudes chosen around the injection threshold $a_{1} \approx a_{1}^{*}$, the electron beam charge \mathcal{Q} is smaller for these lower field amplitudes. In fact, while the charge \mathcal{Q} can be increased with higher a_{1}, this also results in a decrease in the average spin polarization $\left\langle s_{x}\right\rangle$ because of the stronger depolarization induced by the colliding laser pulses. By tuning the laser intensities a_{0} and a_{1}, one can prioritize the electron charge \mathcal{Q} or the spin polarization of the beam. However, one of the key advantages of the CPI scheme is the availability of more degrees of freedom than LWFA with a single laser pulse. Such flexibility naturally lends itself to multiparameter space optimization, as shown in Ref. 67, where Bayesian optimization is employed to conceptually demonstrate high-charge, highly polarized, and low-emittance electron beam generation. In addition, the average charge delivered per unit time can be simply increased

FIG. 7. Parameter scans over the normalized amplitudes a_{0} and a_{1} of the driving and colliding laser pulses, respectively, performed with the spectral quasi-3D PIC code FBPIC. (a) Injected electron charge \mathcal{Q}. (b) Electron beam average spin polarization $\left\langle s_{x}\right\rangle$. The cross marks in (a) and (b) denote the cases in which no significant electron injection was observed. The black dashed line in (a)-(c) plots the injection threshold according to Eq. (14). (c) Average longitudinal spin polarization $\left\langle s_{x}\right\rangle=1-\kappa_{s} a_{0} a_{1}$ as predicted from the scaling obtained with the test-particle simulations (see Table II).
by employing relatively low-power laser systems operating at high repetition rate.

Figures 8 (a) -8 (d) display the electron density distribution, the transverse focusing force, the electron energy spectrum, and the average spin dependence on the energy of an electron beam obtained
with $a_{0}=2$ and $a_{1}=0.05$. The corresponding laser intensity and power are $8.6 \times 10^{18} \mathrm{~W} / \mathrm{cm}^{2}$ and 8.7 TW , and $5.4 \times 10^{15} \mathrm{~W} / \mathrm{cm}^{2}$ and 5.4 GW for the driving and colliding pulses, respectively. Figure 8(a) shows that a bunch of electrons is injected at the rear of the first cavity. The transverse focusing force $-E_{y}+c B_{z}$ stabilizes electron

FIG. 8. FBPIC simulation results with $a_{0}=2$ and $a_{1}=0.05$ driving and colliding laser pulses, respectively. (a) and (b) Snapshots of electron density distribution n_{e} and transverse focusing force $-E_{y}+c B_{z}$, respectively, at $t=500 T_{0}$. (c) Electron energy spectrum $d N_{e} / d \varepsilon_{e}$. (d) Average spin polarization $\left\langle s_{x}\right\rangle$ as a function of electron energy ε_{e}. In (c) and (d), each color corresponds to a specific time. (e) Evolution of injected electrons (rainbow color map) in (ξ, p_{x}) space and the corresponding Hamiltonian distribution $\mathcal{H}\left(\xi, p_{x}\right)$ (brown color map). (f) Zoom of (e) at $t=100 T_{0}$ showing the three electron populations labeled A, B, and C . In (e) and (f), the white dashed ellipse marks the electrons near the Hamiltonian separatrix. (g) Initial position in (x, y) space of the injected electrons that eventually constitute the three populations A, B, and C whose evolution is shown in (e) and (f). The rainbow color map in (e)-(g) indicates the spin polarization at time $t=500 T_{0}$. (h) Evolution of injected electron populations in longitudinal phase space $\left(x, p_{x}\right)$, where each color corresponds to a different time, namely, $t=50 T_{0}, 70 T_{0}$, and $90 T_{0}$.
acceleration in the cavity during the acceleration stage [Fig. 8(b)]. The injected electron bunch has $\sim 2.27 \mathrm{pC}$ charge, 90% average longitudinal spin polarization, and about 33 MeV average energy after undergoing acceleration over $\sim 450 \mu \mathrm{~m}$, with an accelerating gradient of $\sim 90 \mathrm{GeV} / \mathrm{m}$. The electron energy spectrum $d N_{e} / d \varepsilon_{e}$ as a function of time clearly shows that the beam is highly monochromatic and that the energy spread is preserved over the acceleration stage [see Fig. 8(c)]. The average spin distribution $\left\langle s_{x}\right\rangle$ as a function of the electron energy ε_{e} exhibits a correlation between electron energy
and electron degree of polarization, with the higher-energy electrons having predominantly a lower average spin [see Fig. 8(d)].

Further insights can be gained by analyzing the temporal evolution of the injected electrons [Fig. 8(e)] and by closely examining their distribution in $\left(\xi, p_{x}\right)$ phase space [Fig. 8(f)]. By comparing the electron distribution in $\left(\xi, p_{x}\right)$ space at different times [see Fig. 8(e) and the zoom of the distribution of injected electrons at $t=100 T_{0}$ in Fig. 8(f)], we find that the electrons with lower final spin polarization are injected with lower energy, initially, and with a longitudinal

FIG. 9. FBPIC particle tracking results with $a_{0}=2$ and $a_{1}=0.05$ driving and colliding laser pulses, respectively, as functions of $c t-x$ (i.e., the time evolution is from left to right). (a1)-(c1) Evolution of momentum components p_{x} (green), p_{y} (red), p_{z} (blue). (a2)-(c2) Evolution of spin components s_{x} (green), s_{y} (red), s_{z} (blue). (a3)-(c3) Evolution of transverse coordinate y of two representative electrons. (a1)-(a3), (b1)-(b3), and (c1)-(c3) are for electrons from populations A, B, and C, respectively.
form transverse "stripes" that are longitudinally shifted by $\lambda_{0} / 2$ [see Fig. $8(\mathrm{~g})$]. Thus, population B and population C electrons have a phase difference $\phi_{1, B}-\phi_{1, C}=\pi$, which implies a different longitudinal momentum according to Eq. (3). As a result, while electrons belonging to population B quickly slide away from the driving laser pulse and remain in the same region around $x \approx 40 \lambda_{0}$, the electrons of population C follow the driving pulse when they experience the combined fields of the colliding pulses, and drift up to $x \approx 45 \lambda_{0}$ longitudinally [see the orange and green dots in Fig. 8(h) corresponding to $t=70 T_{0}$ and $t=90 T_{0}$, respectively]. This relatively long interaction with the laser fields results in significant spin precession and depolarization.

To confirm the above analysis, we have tracked the dynamics of two representative electrons extracted from each of the three populations A, B, and C , with the two electrons having nearly the same initial conditions. Figures $9(\mathrm{a}-1)$ and $9(\mathrm{a}-2)$ show the evolution of the three components of the momentum p_{x}, p_{y}, p_{z} and of the spin s_{x}, s_{y}, s_{z} of the representative electrons of population A. Figure $9(a-3)$ shows the evolution in $(c t-x, y)$ space of the representative electrons of population A. Figures $9(\mathrm{~b}-1)-9(\mathrm{~b}-3)$ and $9(c-1)-9(c-3)$ show the same quantities for electrons extracted from populations B and C, respectively. Figure 9 shows that the momen-

FIG. 10. FBPIC simulation results showing the initial distribution in (x, y) space of injected electrons for the same driving laser and plasma parameters as in Figs. 8 and 9 , but for different colliding pulse parameters: (a) $a_{1}=0.05$ and $w_{1}=8 \mu \mathrm{~m}$; (b) $a_{1}=0.2$ and $w_{1}=8 \mu \mathrm{~m}$; (c) $a_{1}=0.05$ and $w_{1}=w_{0}=4 \mu \mathrm{~m}$; (d) $a_{1}=0.05$ and $w_{1}=2 \mu \mathrm{~m}$. The rainbow color map indicates the electron longitudinal spin polarization s_{x} at $t=500 T_{0}$.
spin-polarization degree of the generated beam. Remarkably, the required relatively low laser power of this scheme, $a_{0}=2\left(a_{1}=0.05\right)$ and $w_{0}=8 \mu \mathrm{~m}$, corresponding to 8.7 TW (5.4 GW), enable stable, reliable, and highly controllable operations even at high repetition rates, which is particularly relevant for applications such as precision measurements in fundamental physics. ${ }^{92,93}$

ACKNOWLEDGMENTS

The original version of the PIC code EPOCH adapted here is funded by UK EPSRC Grant Nos. EP/G054950/1, EP/G056803/1, EP/G055165/1m, and EP/M022463/1. Z.G. would like to thank Rong-Hao Hu for useful discussions. The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (https://www.gauss-centre.eu/) for providing computing time used for the FBPIC simulations through the John von Neumann Institute for Computing (NIC) on the GCS Supercomputer JUWELS at the Jülich Supercomputing Centre (JSC).

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Z.G. carried out the simulations by using FBPIC with the spin dynamics model implemented by M.J.Q. Z.G.performed the analysis with assistance from M.T.. The manuscript was written by Z.G. and M.T, with feedback from S.B. C.H.K. and K.P. M.T. supervised the project. All authors discussed the results presented in the paper.

Zheng Gong: Conceptualization (equal); Data curation (lead); Formal analysis (equal); Investigation (equal); Methodology (lead); Visualization (lead); Writing - original draft (equal); Writing review \& editing (equal). Michael J. Quin: Investigation (supporting); Software (lead); Writing - review \& editing (equal). Simon Bohlen: Investigation (supporting); Writing - review \& editing (equal). Christoph H. Keitel: Resources (equal); Writing - review \& editing (equal). Kristjan Põder: Conceptualization (supporting); Funding acquisition (supporting); Investigation (supporting); Project administration (supporting); Resources (equal); Supervision (supporting); Writing - review \& editing (equal). Matteo Tamburini: Conceptualization (equal); Formal analysis (equal); Funding acquisition (equal); Investigation (equal); Project administration (lead); Resources (equal); Supervision (lead); Writing - original draft (equal); Writing - review \& editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

APPENDIX: SPIN PUSHER

The spin of an electron in electric \boldsymbol{E} and magnetic \boldsymbol{B} fields precesses according to the Thomas-Bargmann-Michel-Telegdi (TBMT) equation

$$
\begin{equation*}
\frac{\mathrm{d} \boldsymbol{s}}{\mathrm{~d} t}=\boldsymbol{\Omega} \times \boldsymbol{s} \tag{A1}
\end{equation*}
$$

where $\boldsymbol{\Omega}=\boldsymbol{\Omega}_{T}+\boldsymbol{\Omega}_{a}$, with

$$
\begin{gather*}
\boldsymbol{\Omega}_{T}=\frac{|e|}{m_{e} c}\left(\frac{\boldsymbol{B}}{\gamma}-\frac{\boldsymbol{\beta}}{1+\gamma} \times \boldsymbol{E}\right), \tag{A2}\\
\boldsymbol{\Omega}_{a}=\frac{a_{e}|e|}{m_{e} c}\left[\boldsymbol{B}-\frac{\gamma}{1+\gamma} \boldsymbol{\beta}(\boldsymbol{\beta} \cdot \boldsymbol{B})-\boldsymbol{\beta} \times \boldsymbol{E}\right] . \tag{A3}
\end{gather*}
$$

Here, $\gamma=\sqrt{1+\boldsymbol{p}^{2} / m_{e}^{2} c^{2}}$ is the Lorentz factor of the electron, $\boldsymbol{\beta}=\boldsymbol{p} / \gamma m_{e} c$ is its normalized velocity, and $a_{e} \approx 1.16 \times 10^{-3}$ is the electron anomalous magnetic moment. Note that Eqs. (A1)-(A3) are specific to electrons through their dependence on the anomalous magnetic moment a_{e}. The leapfrog equation obtained by discretizing Eq. (A1) and with electromagnetic fields \boldsymbol{E}^{n} and \boldsymbol{B}^{n} at step n is

$$
\begin{equation*}
\frac{s^{n+1 / 2}-s^{n-1 / 2}}{\Delta t}=\boldsymbol{\Omega}^{n} \times \boldsymbol{s}^{n} \tag{A4}
\end{equation*}
$$

Here, we have used the following definitions of the midpoint spin and momentum:

$$
\begin{align*}
\boldsymbol{s}^{n} & =\frac{\boldsymbol{s}^{n+1 / 2}+\boldsymbol{s}^{n-1 / 2}}{2} \tag{A5}\\
\boldsymbol{p}^{n} & =\frac{\boldsymbol{p}^{n+1 / 2}+\boldsymbol{p}^{n-1 / 2}}{2} \tag{A6}\\
\gamma^{n} & =\sqrt{1+\left(\boldsymbol{p}^{n}\right)^{2} / m_{e}^{2} c^{2}} \tag{A7}
\end{align*}
$$

By inserting these quantities into Eq. (A4), one immediately obtains $\left|\boldsymbol{s}^{n+1 / 2}\right|=\left|\boldsymbol{s}^{n-1 / 2}\right|$. Equation (A4) can be rewritten as

$$
\begin{equation*}
s^{n+1 / 2}=s^{\prime}+\left(\boldsymbol{h} \times \boldsymbol{s}^{n+1 / 2}\right) \tag{A8}
\end{equation*}
$$

where $\boldsymbol{h}=\boldsymbol{\Omega}^{n} \Delta t / 2$ and $\boldsymbol{s}^{\prime}=\boldsymbol{s}^{n-1 / 2}+\boldsymbol{h} \times \boldsymbol{s}^{n-1 / 2}$. Now, Eq. (A8) is a linear system of equations in the unknown $s^{n+1 / 2}$, whose solution is

$$
\begin{equation*}
\boldsymbol{s}^{n+1 / 2}=o\left[\boldsymbol{s}^{\prime}+\left(\boldsymbol{h} \cdot \boldsymbol{s}^{\prime}\right) \boldsymbol{h}+\boldsymbol{h} \times \boldsymbol{s}^{\prime}\right] \tag{A9}
\end{equation*}
$$

where $o=1 /\left(1+\boldsymbol{h}^{2}\right)$. The same approach discussed above can be employed for advancing the momentum. ${ }^{94}$

Following the work described in Refs. 36 and 42, several schemes utilizing pre-polarized plasma generation via laserinduced molecular photodissociation ${ }^{37-39}$ have been proposed. ${ }^{43-55}$ Although not used in the present article, we have implemented in FBPIC not only the electron spin degrees of freedom and their evolution as detailed above, but also the capability to approximately model the initial spin state of electrons ionized from the photodissociation products of hydrogen halide molecules such as HCl . In fact, as with the momentum and position, an initial value for the spin must be provided for all species of particles.

For molecules such as HCl , which are not considered in this paper, the unpaired outer-shell electron of H and Cl has an initial spin along the propagation axis of the dissociation laser after ionization, whereas the many spin-paired inner-shell electrons must be treated differently. In practice, when an inner-shell electron of Cl is ionized, its initial spin is randomly oriented in space, to account
of the fact that no orientation is present for these electrons. Ideally, a more sophisticated model would include quantum mechanical effects when determining the initial spin of each successive electron emitted by ionization, but our simpler approach suffices for capturing the essential dynamics of polarized electrons obtained with the technique of laser-induced molecular photodissociation.

REFERENCES

${ }^{1}$ S.-Y. Lee, Accelerator Physics (World Scientific Publishing Company, 2018).
${ }^{2}$ C. Karzmark, R. Loevinger, R. Steele, and M. Weissbluth, "A technique for largefield, superficial electron therapy," Radiology 74, 633-644 (1960).
${ }^{3}$ S. M. Qaim, M. Hussain, I. Spahn, and B. Neumaier, "Continuing nuclear data research for production of accelerator-based novel radionuclides for medical use: A mini-review," Front. Phys. 9, 639290 (2021).
${ }^{4}$ I. Hofmann, "Review of accelerator driven heavy ion nuclear fusion," Matter Radiat. Extremes 3, 1-11 (2018).
${ }^{5}$ S. Möller, Accelerator Technology: Applications in Science, Medicine, and Industry (Springer Nature, 2020).
${ }^{6}$ R. P. Godwin, "Synchrotron radiation as a light source," in Springer Tracts in Modern Physics: Ergebnisse der exakten Naturwissenschaften (Springer Berlin Heidelberg, Berlin, Heidelberg, 1969), Vol. 51, pp. 1-73.
${ }^{7}$ D. A. Deacon, L. Elias, J. M. Madey, G. Ramian, H. Schwettman, and T. I. Smith, "First operation of a free-electron laser," Phys. Rev. Lett. 38, 892 (1977).
${ }^{8}$ S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, and E. Lefebvre, "Femtosecond x rays from laser-plasma accelerators," Rev. Mod. Phys. 85, 1 (2013).
${ }^{9}$ W. Yan, C. Fruhling, G. Golovin, D. Haden, J. Luo, P. Zhang, B. Zhao, J. Zhang, C. Liu, M. Chen et al., "High-order multiphoton Thomson scattering," Nat. Photonics 11, 514-520 (2017).
${ }^{10}$ A. E. Hussein, N. Senabulya, Y. Ma, M. Streeter, B. Kettle, S. J. Dann, F. Albert, N. Bourgeois, S. Cipiccia, J. M. Cole et al., "Laser-wakefield accelerators for highresolution x-ray imaging of complex microstructures," Sci. Rep. 9, 3249 (2019).
${ }^{11}$ B. Kettle, E. Gerstmayr, M. Streeter, F. Albert, R. Baggott, N. Bourgeois, J. Cole, S. Dann, K. Falk et al., "Single-shot multi-keV X-ray absorption spectroscopy using an ultrashort laser-wakefield accelerator source," Phys. Rev. Lett. 123, 254801 (2019).
${ }^{12}$ W. Wang, K. Feng, L. Ke, C. Yu, Y. Xu, R. Qi, Y. Chen, Z. Qin, Z. Zhang, M. Fang, J. Liu, K. Jiang, H. Wang, C. Wang, X. Yang, F. Wu, Y. Leng, J. Liu, R. Li , and Z . Xu , "Free-electron lasing at 27 nanometres based on a laser wakefield accelerator," Nature 595, 516-520 (2021).
${ }^{13}$ F. Bezrukov, M. Y. Kalmykov, B. A. Kniehl, and M. Shaposhnikov, "Higgs boson mass and new physics," J. High Energy Phys. 2012, 140.
${ }^{14}$ T. Tajima and J. Dawson, "Laser electron accelerator," Phys. Rev. Lett. 43, 267 (1979).
${ }^{15}$ E. Esarey, C. Schroeder, and W. Leemans, "Physics of laser-driven plasma-based electron accelerators," Rev. Mod. Phys. 81, 1229 (2009).
${ }^{16}$ A. Gonsalves, K. Nakamura, J. Daniels, C. Benedetti, C. Pieronek, T. De Raadt, S. Steinke, J. Bin, S. Bulanov, J. Van Tilborg et al., "Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide," Phys. Rev. Lett. 122, 084801 (2019).
${ }^{17}$ J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, and V. Malka, "A laser-plasma accelerator producing monoenergetic electron beams," Nature 431, 541-544 (2004).
${ }^{18}$ C. Geddes, C. Toth, J. Van Tilborg, E. Esarey, C. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. Leemans, "High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding," Nature 431, 538-541 (2004).
${ }^{19}$ S. P. Mangles, C. Murphy, Z. Najmudin, A. G. R. Thomas, J. Collier, A. E. Dangor, E. Divall, P. Foster, J. Gallacher, C. Hooker et al., "Monoenergetic beams of relativistic electrons from intense laser-plasma interactions," Nature 431, 535-538 (2004).
${ }^{20}$ X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. Yi, X. Zhang, W. Henderson, Y.Y. Chang, R. Korzekwa, H.-E. Tsai et al., "Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV ," Nat. Commun. 4, 1988 (2013).
${ }^{42}$ A. Hützen, J. Thomas, J. Böker, R. Engels, R. Gebel, A. Lehrach, A. Pukhov, T. P. Rakitzis, D. Sofikitis, and M. Büscher, "Polarized proton beams from laserinduced plasmas," High Power Laser Sci. Eng. 7, e16 (2019).
${ }^{43}$ Y. Wu, L. Ji, X. Geng, Q. Yu, N. Wang, B. Feng, Z. Guo, W. Wang, C. Qin, X. Yan et al., "Polarized electron-beam acceleration driven by vortex laser pulses," New J. Phys. 21, 073052 (2019).
${ }^{44}$ Y. Wu, L. Ji, X. Geng, Q. Yu, N. Wang, B. Feng, Z. Guo, W. Wang, C. Qin, X. Yan et al., "Polarized electron acceleration in beam-driven plasma wakefield based on density down-ramp injection," Phys. Rev. E 100, 043202 (2019).
${ }^{45}$ M. Büscher, A. Hützen, I. Engin, J. Thomas, A. Pukhov, J. Böker, R. Gebel, A. Lehrach, R. Engels, T. P. Rakitzis, and D. Sofikitis, "Polarized proton beams from a laser-plasma accelerator," Int. J. Mod. Phys. A 34, 1942028 (2019).
${ }^{46}$ L. Jin, M. Wen, X. Zhang, A. Hützen, J. Thomas, M. Büscher, and B. Shen, "Spinpolarized proton beam generation from gas-jet targets by intense laser pulses," Phys. Rev. E 102, 011201 (2020).
${ }^{47}$ Z. Gong, Y. Shou, Y. Tang, and X. Yan, "Energetic spin-polarized proton beams from two-stage coherent acceleration in laser-driven plasma," Phys. Rev. E 102, 053212 (2020).
${ }^{48}$ J. Thomas, A. Hützen, A. Lehrach, A. Pukhov, L. Ji, Y. Wu, X. Geng, and M. Büscher, "Scaling laws for the depolarization time of relativistic particle beams in strong fields," Phys. Rev. Accel. Beams 23, 064401 (2020).
${ }^{49}$ X. Li, P. Gibbon, A. Hützen, M. Büscher, S. Weng, M. Chen, and Z. Sheng, "Polarized proton acceleration in ultraintense laser interaction with near-critical-density plasmas," Phys. Rev. E 104, 015216 (2021).
${ }^{50}$ L. Reichwein, A. Hützen, M. Büscher, and A. Pukhov, "On the robustness of spin polarization for magnetic vortex accelerated proton bunches in density down-ramps," Plasma Phys. Controlled Fusion 63, 085011 (2021).
${ }^{51}$ L. Reichwein, A. Pukhov, and M. Büscher, "Acceleration of spin-polarized proton beams via two parallel laser pulses," Phys. Rev. Accel. Beams 25, 081001 (2022).
${ }^{52}$ L. Reichwein, A. Hützen, M. Büscher, and A. Pukhov, "Spin-polarized particle beams from laser-plasma based accelerators," J. Phys.: Conf. Ser. 2249, 012018 (2022).
${ }^{53}$ L. Reichwein, "Particle acceleration in plasmas: Non-linear wakefields for leptons and magnetic vortices for spin-polarized protons," Ph.D. thesis, Universitätsund Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2022.
${ }^{54}$ H. C. Fan, X. Y. Liu, X. F. Li, J. F. Qu, Q. Yu, Q. Kong, S. M. Weng, M. Chen, M. Büscher, P. Gibbon, S. Kawata, and Z. M. Sheng, "Control of electron beam polarization in the bubble regime of laser-wakefield acceleration," New J. Phys. 24, 083047 (2022).
${ }^{55}$ X. Yan, Y. Wu, X. Geng, H. Zhang, B. Shen, and L. Ji, "Generation of polarized proton beams with gaseous targets from CO_{2}-laser-driven collisionless shock acceleration," Phys. Plasmas 29, 053101 (2022).
${ }^{56}$ R. Hu, H. Zhou, Z. Tao, M. Lv, S. Zou, and Y. Ding, "Spin depolarization induced by self-generated magnetic fields during cylindrical implosions," Phys. Rev. E 102, 043215 (2020).
${ }^{57}$ Z. Nie, F. Li, F. Morales, S. Patchkovskii, O. Smirnova, W. An, N. Nambu, D. Matteo, K. A. Marsh, F. Tsung, W. B. Mori, and C. Joshi, "In situ generation of high-energy spin-polarized electrons in a beam-driven plasma wakefield accelerator," Phys. Rev. Lett. 126, 054801 (2021).
${ }^{58}$ D. Umstadter, J. K. Kim, and E. Dodd, "Laser injection of ultrashort electron pulses into wakefield plasma waves," Phys. Rev. Lett. 76, 2073-2076 (1996).
${ }^{59}$ E. Esarey, R. Hubbard, W. Leemans, A. Ting, and P. Sprangle, "Electron injection into plasma wakefields by colliding laser pulses," Phys. Rev. Lett. 79, 2682 (1997).
${ }^{60}$ J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, "Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses," Nature 444, 737-739 (2006).
${ }^{61}$ H. Kotaki, I. Daito, M. Kando, Y. Hayashi, K. Kawase, T. Kameshima, Y. Fukuda, T. Homma, J. Ma, L.-M. Chen et al., "Electron optical injection with head-on and countercrossing colliding laser pulses," Phys. Rev. Lett. 103, 194803 (2009).
${ }^{62}$ C. Rechatin, J. Faure, A. Ben-Ismaïl, J. Lim, R. Fitour, A. Specka, H. Videau, A. Tafzi, F. Burgy, and V. Malka, "Controlling the phase-space volume of injected electrons in a laser-plasma accelerator," Phys. Rev. Lett. 102, 164801 (2009).
${ }^{63}$ O. Lundh, J. Lim, C. Rechatin, L. Ammoura, A. Ben-Ismaïl, X. Davoine, G. Gallot, J.-P. Goddet, E. Lefebvre, V. Malka, and J. Faure, "Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator," Nat. Phys. 7, 219-222 (2011).
${ }^{64}$ X. Davoine, E. Lefebvre, C. Rechatin, J. Faure, and V. Malka, "Cold optical injection producing monoenergetic, multi- GeV electron bunches," Phys. Rev. Lett. 102, 065001 (2009).
${ }^{65}$ V. Malka, J. Faure, C. Rechatin, A. Ben-Ismail, J. K. Lim, X. Davoine, and E. Lefebvre, "Laser-driven accelerators by colliding pulses injection: A review of simulation and experimental results," Phys. Plasmas 16, 056703 (2009).
${ }^{66}$ M. Hansson, B. Aurand, H. Ekerfelt, A. Persson, and O. Lundh, "Injection of electrons by colliding laser pulses in a laser wakefield accelerator," Nucl. Instrum. Methods Phys. Res., Sect. A 829, 99-103 (2016).
${ }^{67}$ S. Bohlen, Z. Gong, M. J. Quin, M. Tamburini, and K. Põder, "Colliding pulse injection of polarized electron bunches in a laser-plasma accelerator," Phys. Rev. Res. 5, 033205 (2023).
${ }^{68}$ R. Lehe, M. Kirchen, I. A. Andriyash, B. B. Godfrey, and J.-L. Vay, "A spectral, quasi-cylindrical and dispersion-free particle-in-cell algorithm," Comput. Phys. Commun. 203, 66-82 (2016).
${ }^{69}$ T. Arber, K. Bennett, C. Brady, A. Lawrence-Douglas, M. Ramsay, N. Sircombe, P. Gillies, R. Evans, H. Schmitz, A. Bell, and C. P. Ridgers, "Contemporary particle-in-cell approach to laser-plasma modelling," Plasma Phys. Controlled Fusion 57, 113001 (2015).
${ }^{70}$ P. Ehrenfest, "Bemerkung über die angenäherte gültigkeit der klassischen mechanik innerhalb der quantenmechanik," Z. Phys. 45, 455-457 (1927).
${ }^{71}$ L. H. Thomas, "I. The kinematics of an electron with an axis," London, Edinburgh, Dublin Philos. Mag. J. Sci. 3, 1-22 (1927).
${ }^{72}$ V. Bargmann, L. Michel, and V. Telegdi, "Precession of the polarization of particles moving in a homogeneous electromagnetic field," Phys. Rev. Lett. 2, 435 (1959).
${ }^{73}$ J. Vieira, C.-K. Huang, W. Mori, and L. Silva, "Polarized beam conditioning in plasma based acceleration," Phys. Rev. Spec. Top.-Accel. Beams 14, 071303 (2011).
${ }^{74}$ Z. Gong, K. Z. Hatsagortsyan, and C. H. Keitel, "Retrieving transient magnetic fields of ultrarelativistic laser plasma via ejected electron polarization," Phys. Rev. Lett. 127, 165002 (2021).
${ }^{75}$ Z. Gong, K. Z. Hatsagortsyan, and C. H. Keitel, "Deciphering in situ electron dynamics of ultrarelativistic plasma via polarization pattern of emitted γ-photons," Phys. Rev. Res. 4, L022024 (2022).
${ }^{76}$ Z. Gong, K. Z. Hatsagortsyan, and C. H. Keitel, "Electron polarization in ultrarelativistic plasma current filamentation instabilities," Phys. Rev. Lett. 130, 015101 (2023).
${ }^{77}$ M. Tamburini, F. Pegoraro, A. Di Piazza, C. H. Keitel, and A. Macchi, "Radiation reaction effects on radiation pressure acceleration," New J. Phys. 12, 123005 (2010).
${ }^{78}$ M. Tamburini, F. Pegoraro, A. Di Piazza, C. H. Keitel, T. V. Liseykina, and A. Macchi, "Radiation reaction effects on electron nonlinear dynamics and ion acceleration in laser-solid interaction," Nucl. Instrum. Methods Phys. Res., Sect. A 653, 181-185 (2011).
${ }^{79}$ M. Wen, H. Bauke, and C. H. Keitel, "Identifying the Stern-Gerlach force of classical electron dynamics," Sci. Rep. 6, 31624 (2016).
${ }^{80}$ M. Wen, C. H. Keitel, and H. Bauke, "Spin-one-half particles in strong electromagnetic fields: Spin effects and radiation reaction," Phys. Rev. A 95, 042102 (2017).
${ }^{81}$ A. A. Sokolov and I. M. Ternov, "Synchrotron radiation," Sov. Phys. J. 10, 39-47 (1967); arXiv: 10101971.
${ }^{82}$ D. Bauer, P. Mulser, and W. H. Steeb, "Relativistic ponderomotive force, uphill acceleration, and transition to chaos," Phys. Rev. Lett. 75, 4622-4625 (1995).
${ }^{83}$ Z.-M. Sheng, K. Mima, Y. Sentoku, M. Jovanović, T. Taguchi, J. Zhang, and J. Meyer-ter Vehn, "Stochastic heating and acceleration of electrons in colliding laser fields in plasma," Phys. Rev. Lett. 88, 055004 (2002).
${ }^{84}$ Z. Gong, R. Hu, Y. Shou, B. Qiao, C. Chen, F. Xu, X. He, and X. Yan, "Radiation reaction induced spiral attractors in ultra-intense colliding laser beams," Matter Radiat. Extremes 1, 308-315 (2016).
${ }^{85}$ Z. Gong, R. Hu, J. Yu, Y. Shou, A. Arefiev, and X. Yan, "Radiation rebound and quantum splash in electron-laser collisions," Phys. Rev. Accel. Beams 22, 093401 (2019).
${ }^{86}$ Z. Gong, F. Mackenroth, X. Yan, and A. Arefiev, "Radiation reaction as an energy enhancement mechanism for laser-irradiated electrons in a strong plasma magnetic field," Sci. Rep. 9, 17181 (2019).
${ }^{87}$ A. V. Arefiev, G. E. Cochran, D. W. Schumacher, A. P. Robinson, and G. Chen, "Temporal resolution criterion for correctly simulating relativistic electron motion in a high-intensity laser field," Phys. Plasmas 22, 013103 (2015).
${ }^{88}$ E. Esarey and M. Pilloff, "Trapping and acceleration in nonlinear plasma waves," Phys. Plasmas 2, 1432-1436 (1995).
${ }^{89}$ W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tóth, K. Nakamura, C. G. Geddes, E. Esarey, C. Schroeder, and S. Hooker, "GeV electron beams from a centimetrescale accelerator," Nat. Phys. 2, 696-699 (2006).
${ }^{90}$ Here the potential $\varphi(\xi)$ in the Hamiltonian \mathcal{H} is obtained from the E_{x} at $y=0$ of the 2D PIC simulation [see the black dashed line in Fig. 6(a)].
${ }^{91}$ See https://fbpic.github.io/overview/pic_algorithm.html for FBPIC algorithm \& features.
${ }^{92}$ H. A. Tolhoek, "Electron polarization, theory and experiment," Rev. Mod. Phys. 28, 277-298 (1956).
${ }^{93}$ Jefferson Lab Qweak Collaboration (Qweak Collaboration), "Precision measurement of the weak charge of the proton," Nature 557, 207-211 (2018).
${ }^{94} \mathrm{M}$. Tamburini, "Radiation reaction effects in superintense laser-plasma interaction," Ph.D. thesis, University of Pisa, 2011.

